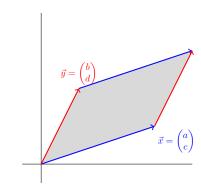
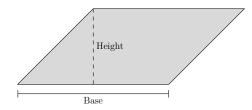
Geometry of Determinants

Theorem 1. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then $|\det(A)|$ is the area of the parallelogram formed by the vectors $\vec{x} = \begin{pmatrix} a \\ c \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} b \\ d \end{pmatrix}$ shown below.



Fact: The area of a parallelogram is the base times the height.



1. Explain why the area of the parallelogram in the theorem is $||\vec{x}|| ||\vec{y}|| \sin \theta$ where θ is the angle between the vectors \vec{x} and \vec{y} .

2. Use the trig identity $\sin^2 \theta + \cos^2 \theta = 1$ and the fact that $\cos \theta = \frac{\vec{x} \cdot \vec{y}}{||\vec{x}|| ||\vec{y}||}$ to find a formula for $\sin \theta$ in terms of the vectors \vec{x} and \vec{y} .

3. Combine your equation for $\sin \theta$ with your equation for the area of the parallelogram to get a formula for the area that doesn't need the angle θ . You should get Area = $\sqrt{||\vec{x}||^2 ||\vec{y}||^2 - (\vec{x} \cdot \vec{y})^2}$.

4. When I plugged a, b, c and d into \vec{x} and \vec{y} , I got Area = $\sqrt{a^2d^2 - 2abcd + b^2c^2}$. Why does that prove the theorem?

5. Draw a picture of the parallelogram that you would get if you replaced $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by the matrix $\begin{pmatrix} a & (b+a) \\ c & (d+c) \end{pmatrix}$. Use your picture to explain intuitively why adding a multiple of one column (or row) to another does not change the determinant.

6. Draw a picture of the parallelogram that you would get if you multiplied the first column of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ by 2. Use your picture to explain intuitively why doubling one column (or row) doubles the determinant.