Linear Algebra

Midterm 3 Review Problems

- 1. Make sure that you can define each of the following mathematical concepts.
 - (a) Elementary reduction matrix

Solution: A matrix that can be obtained from the identity matrix by one Gaussian elimination step.

(b) Invertible matrix

Solution: A matrix A is invertible if there is a matrix B such that AB = BA = I.

(c) Inverse of a matrix

Solution: The inverse A is a matrix B such that AB = BA = I.

(d) Similar matrices

Solution: We say that A is similar to B if there is an invertible matrix S such that $A = S^{-1}BS$.

(e) Characteristic polynomial

Solution: The characteristic polynomial is $\det(A - \lambda I)$.

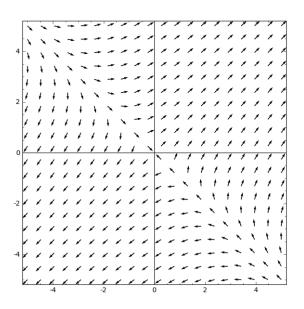
(f) Eigenvector

Solution: An eigenvector of A is any **nonzero** vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$ for some scalar λ .

(g) Eigenvalue

Solution: An eigenvalue of A is any scalar λ such that $A\vec{v} = \lambda \vec{v}$ for some nonzero vector \vec{v} .

2. Which matrix below corresponds to the following direction field?



- A. $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
- B. $\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$
- C. $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$
- 3. Find the determinants of the following matrices.
 - (a) $\begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix}$
 - (b) $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & -1 \\ 5 & 0 & 0 \end{pmatrix}$
 - (c) $\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$
 - (d) $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 3 & 5 & 7 \\ 1 & 1 & 1 & 1 & 9 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$
- 4. Prove that if λ is an eigenvalue of a matrix A, then $c\lambda$ is an eigenvalue of the matrix cA for any scalar c.

5. For any matrix of the form
$$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$
 where $a, b, c \in \mathbb{R}$, show that the vector $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is an eigenvector. What is its corresponding eigenvalue?

6. Find the eigenvalues and eigenvectors of the following matrices.

(a)
$$\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 2i & -1 \\ 0 & -i \end{pmatrix}$$

- 7. Let $a, b \in \mathbb{R}$. Show that the 2-by-2 matrix $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ has eigenvalues $a \pm bi$ by showing that $\begin{pmatrix} 1 \\ i \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ are eigenvectors of A.
- 8. For each elementary reduction matrix, describe in words the row operation that the matrix represents.

$$\text{(a)} \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{cccc}
(c) & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}
\end{array}$$

- 9. The matrix $\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ has only one eigenvalue, 2. What is the dimension of the eigenspace corresponding to 2? What is a basis for that eigenspace?
- 10. Suppose that A is a 4-by-4 matrix and \vec{v} is an eigenvector of A with corresponding eigenvalue 3.
 - (a) Is $-2\vec{v}$ an eigenvector of A? If so, what is its corresponding eigenvalue?
 - (b) Is \vec{v} an eigenvector of 5A. If so, what is its corresponding eigenvalue?
 - (c) Is \vec{v} and eigenvector of A^2 . If so, what is its corresponding eigenvalue?

- 11. A is a 3-by-3 matrix with eigenvectors $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$ and corresponding eigenvalue $\lambda_1 = 1$, $\lambda_2 = 2$, and $\lambda_3 = 3$. Find the matrix A.
- 12. The unit circle (i.e., the circle with radius 1 centered at the origin in \mathbb{R}^2) has area π . What is the area of the image of the unit circle after being transformed by the matrix $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$?
- 13. Suppose that $A = B \begin{pmatrix} 1 & 0 \\ 0 & 10 \end{pmatrix} B^{-1}$, where $B = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ and $B^{-1} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.
 - (a) Find A
 - (b) Find A^6 .