Math 231 - Tentative Schedule

  Lecture     Date     Section     Topic     Homework  
1 1/15   No class      
2 1/17   No class      
3 1/20 1.1   Systems of Linear Equations     1.1# 1, 2, 3, 7, 8, 13, 18  
4 1/22 1.2   Row Reduction and Echelon Forms     1.2# 1, 2, 3, 4, 7, 10, 13, 14, 21  
5 1/24 1.3   Vector Geometry (video 1, video 2)     1.3# 1, 2, 3, 4 and the in-class problems  
6 1/27 1.3   Vector Equations (video)     1.3# 9, 10, 11, 13, 28  
7 1/29 1.4   The Matrix Equation Ax = b     1.4# 1-4, 6, 8, 10, 11, 13, 17-20  
8 1/31 1.5   Solution Sets of Linear Systems     1.5# 5, 11, 12, 14, 15, 17, 34  
9 2/03 1.7   Linear Independence     1.7# 2, 4, 7, 8, 10, 20, 27, 28, 40  
10 2/05 1.8   Introduction to Linear Transformations     1.8# 4, 8, 9, 13, 17, 18, 29, 32  
11 2/07 1.9   The Matrix of a Linear Transformation     1.9# 1, 3, 17, 31, 32, 37  
12 2/10 2.1   Matrix Operations     2.1# 1, 2, 3, 11, 27  
13 2/12   Midterm 1      
14 2/14 2.2   The Inverse of a Matrix     2.2# 3, 6, 8, 16, 33  
15 2/17 2.3   Characterizations of Invertible Matrices     2.3# 6, 8, 15, 16, 34  
16 2/19 2.8   Subspaces of R^n     2.8# 1, 2, 6, 7, 12, 19, 20  
17 2/21 2.9   Dimension and Rank     2.9# 9, 10, 14, 15, 19, 20, 22, 24  
18 2/24 3.1   Introduction to Determinants     3.1# 9, 13, 16, 20, 22  
19 2/26 3.2   Properties of Determinants     3.2# 5, 15-18, 22, 26, 29, 36  
20 2/28 3.3   Cramer's Rule, Volume, and Linear Transformations     3.3# 7, 8, 19, 20, 21, 28, 30  
21 3/03 4.1   Abstract Vector Spaces      
22 3/05 5.1   Eigenvectors and Eigenvalues     5.1# 2, 4, 7, 17, 18, 19, 35, 37  
23 3/07 5.2   The Characteristic Equation     5.2# 2, 4, 9, 12, 16, 19  
24 3/17 5.3   Diagonalization     5.3# 1, 2, 5, 12, 15  
25 3/19   Review      
26 3/21   Midterm 2      
27 3/24 5.4   Eigenvectors and Linear Transformations     4.4# 3, 5, 11; 5.4# 12, 14, 17, 30  
28 3/26 5.5   Complex Eigenvalues     5.5# 1, 4, 6, 7, 10  
29 3/28 5.6   Discrete Dynamical Systems     5.6# 1, 3, 4, 5, 17, 18  
30 3/31 5.7   Applications to Differential Equations     5.7# 1, 2  
31 4/02 6.1   Dot Products and Orthogonality     6.1# 1, 4, 6, 8, 9, 14, 15-18, 27  
32 4/04 6.1   Fundamental Theorem of Linear Algebra     These problems  
33 4/07 6.2   Orthogonal Sets     6.2# 2, 4, 6, 7, 10, 12, 13, 35  
34 4/09 6.3   Orthogonal Projections     6.3# 2, 4, 10, 11, 25, 26  
35 4/11 6.5   Least-Squares Problems     6.5# 3, 5, 7, 25  
36 4/14 6.6   Applications to Regression     6.6# 7, 11  
37 4/16   Midterm 3      
38 4/18 6.4   The Gram-Schmidt Process     6.4# 2, 3, 4, 7, 8, 25  
39 4/21 7.1   Symmetric Matrices     7.1# 27, 28, 29, 35, 36 (Hint: Prove that Bz=0)  
40 4/23 7.2   Quadratic Forms     7.1# 17; 7.2# 3, 7, 9  
41 4/25 7.4   The Singular Value Decomposition      
42 4/28 7.5   Applications of the SVD