|   Lecture   |   Date   |   Section   |   Topic   |   Homework   |
|---|---|---|---|---|
| 1 | 1/15 |   No class   |     | |
| 2 | 1/17 |   No class   |     | |
| 3 | 1/20 | 1.1 |   Systems of Linear Equations   |   1.1# 1, 2, 3, 7, 8, 13, 18   |
| 4 | 1/22 | 1.2 |   Row Reduction and Echelon Forms   |   1.2# 1, 2, 3, 4, 7, 10, 13, 14, 21   |
| 5 | 1/24 | 1.3 |   Vector Geometry (video 1, video 2)   |   1.3# 1, 2, 3, 4 and the in-class problems   |
| 6 | 1/27 | 1.3 |   Vector Equations (video)   |   1.3# 9, 10, 11, 13, 28   |
| 7 | 1/29 | 1.4 |   The Matrix Equation Ax = b   |   1.4# 1-4, 6, 8, 10, 11, 13, 17-20   |
| 8 | 1/31 | 1.5 |   Solution Sets of Linear Systems   |   1.5# 5, 11, 12, 14, 15, 17, 34   |
| 9 | 2/03 | 1.7 |   Linear Independence   |   1.7# 2, 4, 7, 8, 10, 20, 27, 28, 40   |
| 10 | 2/05 | 1.8 |   Introduction to Linear Transformations   |   1.8# 4, 8, 9, 13, 17, 18, 29, 32   |
| 11 | 2/07 | 1.9 |   The Matrix of a Linear Transformation   |   1.9# 1, 3, 17, 31, 32, 37   |
| 12 | 2/10 | 2.1 |   Matrix Operations   |   2.1# 1, 2, 3, 11, 27   |
| 13 | 2/12 |   Midterm 1   |     | |
| 14 | 2/14 | 2.2 |   The Inverse of a Matrix   |   2.2# 3, 6, 8, 16, 33   |
| 15 | 2/17 | 2.3 |   Characterizations of Invertible Matrices   |   2.3# 6, 8, 15, 16, 34   |
| 16 | 2/19 | 2.8 |   Subspaces of R^n   |   2.8# 1, 2, 6, 7, 12, 19, 20   |
| 17 | 2/21 | 2.9 |   Dimension and Rank   |   2.9# 9, 10, 14, 15, 19, 20, 22, 24   |
| 18 | 2/24 | 3.1 |   Introduction to Determinants   |   3.1# 9, 13, 16, 20, 22   |
| 19 | 2/26 | 3.2 |   Properties of Determinants   |   3.2# 5, 15-18, 22, 26, 29, 36   |
| 20 | 2/28 | 3.3 |   Cramer's Rule, Volume, and Linear Transformations   |   3.3# 7, 8, 19, 20, 21, 28, 30   |
| 21 | 3/03 | 4.1 |   Abstract Vector Spaces   |     |
| 22 | 3/05 | 5.1 |   Eigenvectors and Eigenvalues   |   5.1# 2, 4, 7, 17, 18, 19, 35, 37   |
| 23 | 3/07 | 5.2 |   The Characteristic Equation   |   5.2# 2, 4, 9, 12, 16, 19   |
| 24 | 3/17 | 5.3 |   Diagonalization   |   5.3# 1, 2, 5, 12, 15   |
| 25 | 3/19 |   Review   |     | |
| 26 | 3/21 |   Midterm 2   |     | |
| 27 | 3/24 | 5.4 |   Eigenvectors and Linear Transformations   |   4.4# 3, 5, 11; 5.4# 12, 14, 17, 30   |
| 28 | 3/26 | 5.5 |   Complex Eigenvalues   |   5.5# 1, 4, 6, 7, 10   |
| 29 | 3/28 | 5.6 |   Discrete Dynamical Systems   |   5.6# 1, 3, 4, 5, 17, 18   |
| 30 | 3/31 | 5.7 |   Applications to Differential Equations   |   5.7# 1, 2   |
| 31 | 4/02 | 6.1 |   Dot Products and Orthogonality   |   6.1# 1, 4, 6, 8, 9, 14, 15-18, 27   |
| 32 | 4/04 | 6.1 |   Fundamental Theorem of Linear Algebra   |   These problems   |
| 33 | 4/07 | 6.2 |   Orthogonal Sets   |   6.2# 2, 4, 6, 7, 10, 12, 13, 35   |
| 34 | 4/09 | 6.3 |   Orthogonal Projections   |   6.3# 2, 4, 10, 11, 25, 26   |
| 35 | 4/11 | 6.5 |   Least-Squares Problems   |   6.5# 3, 5, 7, 25   |
| 36 | 4/14 | 6.6 |   Applications to Regression   |   6.6# 7, 11   |
| 37 | 4/16 |   Midterm 3   |     | |
| 38 | 4/18 | 6.4 |   The Gram-Schmidt Process   |   6.4# 2, 3, 4, 7, 8, 25   |
| 39 | 4/21 | 7.1 |   Symmetric Matrices   |   7.1# 27, 28, 29, 35, 36 (Hint: Prove that Bz=0)   |
| 40 | 4/23 | 7.2 |   Quadratic Forms   |   7.1# 17; 7.2# 3, 7, 9   |
| 41 | 4/25 | 7.4 |   The Singular Value Decomposition   |     |
| 42 | 4/28 | 7.5 |   Applications of the SVD   |     |