1. Nurses in an inner-city hospital were unknowingly observed on their use of latex gloves during procedures for which glove use is recommended. The nurses then attended a presentation on the importance of glove use. One month after the presentation, the same nurses were observed again. Here are the proportions of procedures for which each nurse wore gloves:

Nurse	Before	After
1	0.50000	0.85700
2	0.50000	0.83300
3	1.00000	1.00000
4	0.00000	1.00000
5	0.00000	1.00000
6	0.00000	1.00000
7	1.00000	1.00000
8	0.00000	1.00000
9	0.00000	0.66700
10	0.16700	1.00000
11	0.00000	0.75000
12	0.00000	1.00000
13	0.00000	1.00000
14	1.00000	1.00000

- (a) Write a short paragraph to answer the following questions: Why is a one-sided alternative proper here? Why must matched pairs methods be used?
- (b) Make a histogram showing the increase in the proportion of procedures where gloves where used after the presentation. Does this histogram suggest that a matched pairs t-test would be appropriate? Explain.
- (c) Do a permutation test for the difference in means. Does the test indicate that the presentation was helpful?
- (d) If you are mainly interested in whether or not the effect of the intervention is significant at the 5% level, an alternative approach is to give a bootstrap confidence interval for the mean difference within pairs. If zero (no difference) falls outside the interval, the result is significant. Do this and report your conclusion.
- (e) Compare your answers from parts (c) and (d) with the corresponding results from using a classical t-test and t-distribution confidence interval with this data. Are the results similar or different? If they are different, what accounts for the difference?