Homework 2 - Math 254

Due in class Wednesday, February 2.

- 1. Express each statement in one of the forms $P \wedge Q$, $P \vee Q$, or $\sim P$. Be sure to also state exactly what statements P and Q stand for.
 - (a) $x \in A B$
 - (b) It will not rain today, but it will rain tomorrow.
- 2. Convert each of the following sentences into a sentence having the form "if P, then Q."
 - (a) In order for a function to be differentiable, it must be integrable.
 - (b) Every nonempty set has more than one subset.
- 3. Convert each of the following sentences into a sentence having the form "if P, then Q."
 - (a) A continuous function has a critical point if it has more than one root.
 - (b) An integer is divisible by 10 only if it is divisible 5.
- 4. Use a truth table to show that $\sim (P \Rightarrow Q)$ is logically equivalent to $P \land \sim Q$.

5. Sketch the following set in the (x, y)-plane: $\{(x, y) \in [1, 2] \times [1, 3] : x = 1 \text{ or } y \in \{1, 2, 3\}\}$.

6	Write the following a	ac English	contoncos	Say whether	they are	true or false
υ.	write the following a	as English	semences.	say whether	mey are	true or raise.

(a)
$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x < n.$$

(b)
$$\exists n \in \mathbb{N}, \forall X \in \mathcal{P}(N), |X| < n.$$

7. Translate each of the following sentences into symbolic logic.

- (a) For any positive real number x, there is a positive rational number less than x.
- (b) Every odd degree polynomial p has a real number x such that p(x) = 0.

8. Negate the following logical expressions.

(a)
$$\forall x > 0, \exists y > 0, xy = 1.$$

(b)
$$\forall X \in \mathcal{P}(\mathbb{N}), X \in \mathbb{R}$$
.

9. Negate the following sentences.

- (a) If x is rational then \sqrt{x} is rational.
- (b) For every $\epsilon > 0$, there is an $M \in \mathbb{R}$ such that $|f(x)| < \epsilon$ whenever x > M.
- 10. Determine whether the statements $(P \Rightarrow (Q \land \sim R))$ and $\sim (P \land (Q \Rightarrow R))$ are logically equivalent. Explain how you can tell.