- 1. Suppose you use the Taylor polynomial of degree n=20 (centered at zero) to approximate the function $f(x)=e^x$. What does Taylor's theorem say the worst case error would be if you used it to compute e^6 ? (You can estimate $e \approx 2.72$ in the error formula).
- 2. Write a Python program to find and sum the terms of the 20th degree Taylor polynomial to approximate e^6 . Instead of writing a for-loop, I recommend using a **list-comprehension**:

[expression for item in iterable].

Here is an example:

```
from scipy.special import factorial
sum([1/factorial(n) for n in range(10)])
```

- 3. Use the math.exp function in the Python math library to find the "exact" value of e^6 . Compare this with your Taylor polynomial approximation.
 - (a) What is the absolute error in your approximation?
 - (b) What is the relative error in your approximation?
- 4. Adjust your program to find the 20th degree Taylor polynomial approximation to find e^{-6} .
- 5. Compare your answer to the actual value of e^{-6} .
 - (a) What is the absolute error in your approximation?
 - (b) What is the relative error in your approximation?

- 6. Compare the following:
 - (a) The Maclaurin polynomial approximation for $\sin(4\pi)$ (you can pick the degree, as long as it is at least 20).
 - (b) $\sin(4\pi)$ according to Python (using the sin() function and pi from the math library).
 - (c) The actual value of $\sin(4\pi)$.
- 7. Use the Maclaurin series for $\cos x$ to find the Maclaurin series for $\cos \sqrt{x}$. Then integrate to find the Maclaurin series for $\int \cos \sqrt{x} \, dx$.

8. Use Python to approximate $\int_0^1 \cos \sqrt{x} \, dx$.