1. If you drop a rock, it accelerates due to gravity. But as the rock falls faster, air resistance reduces the acceleration until the rock reaches terminal velocity. A differential equation for the velocity v (in meters per second) of the rock as it falls is

$$
\frac{d v}{d t}=-9.8+0.002 v^{2}
$$

Note that the $0.002 v^{2}$ term represents air resistance. What is the terminal velocity of the rock? Hint: You don't need to solve the differential equation! Just figure how fast the rock needs to fall so that its velocity stops changing.
2. A simple electrical circuit has a 12 -volt battery connected to a 6 -ohm resistor and a 2 -henry inductor. The current I (in amps) flowing through the circuit at time t (seconds) is determined by the differential equation

$$
2 \frac{d I}{d t}+6 I=12
$$

(a) Sketch a slope field for this differential equation.
(b) What is the limiting value of the current I as time goes on?

