1. How many terms of the alternating series $1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \dots$ would you need in order to estimate the sum with an error of less than 0.01? Use a calculator or Desmos to find the sum of the series to that level of accuracy.

2. Use Desmos to approximate the sum $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{36^n (2n)!}$ by computing the partial sum up to the n=4 term. Include an estimate for how much error there is in this approximation.

- 3. Find a Maclaurin series for each function below by starting with the Maclaurin series formulas on the Formula Sheet.
 - (a) $\cos(\sqrt{x})$.
 - (b) $\frac{\sin x}{x}$.
- 4. Find an infinite series for the integral $\int_0^{\sqrt{\pi}} \sin(x^2) dx$.

5.	Find the	radius	and	interval	of	convergence	for	the power	series	$\sum_{}^{\infty}$	$\frac{n^2(x-\frac{n^2(n-1)}{6^n})}{6^n}$	$\frac{5)^n}{}$.
										n=1		

6. Find the radius and interval of convergence for the power series
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{n!} x^n.$$

7. Identify each series below as alternating, geometric, or p-series. Note: more than one description might apply so circle or list all that are appropriate. Then determine whether the series converges or diverges.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n}$$
 Alternating Converges p-Series Diverges

(b)
$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{n^3}{n+1}\right)$$
 Alternating Converges p-Series

(c)
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} + \dots$$
 Alternating Geometric Diverges p-Series