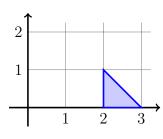
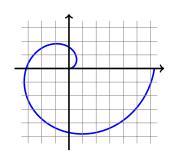

1. Find the volume of the region under $y = \sqrt{\sin x}$ from x = 0 to $x = \pi$ when it is revolved around the x-axis.


2. Find the volume of the region under the curve $y = \frac{1}{x}$ from x = 1 to x = 2 when it is revolved around the x-axis.

3. Let \mathcal{R} be the region between the curve $y = 2 - x^2$ and the line y = 1. When you revolve this region around the x-axis, you get a ring shape. Use the washer method to find the volume of this ring.

4. Find the volume of the solid obtained by revolving the region under $y = 2x^2 - x^3$ (shown below) around the y-axis.


5. What is the volume of the solid obtained by revolving the triangle shown below around the y-axis?

6. What is the volume of the solid obtained by revolving the region beneath $y = e^{-x}$ from x = 0 to ∞ around the x-axis?

7. Find the length of the curve $y = \frac{4}{3}x^{3/2}$ from x = 0 to x = 6.

8. Set up a definite integral that represents the length of Archimedes spiral (shown below), which is given by the parametric equations $x(t) = t \cos t$, $y(t) = t \sin t$ from t = 0 to $t = 2\pi$. You don't need to calculate the integral.

