Math 444 - Homework 1

Simplify each of the following expressions as much as you can. Show your work. No calculators.

1. i^{14} 2. (5i)(-2i)(3i) 3. $(3+i)^2$

4. Im
$$\left(\frac{12}{5-i}\right)$$
 5. $(3-2i)(4+i)$ 6. $\frac{1-i}{1+i}$

7.
$$\left| \frac{1}{5+12i} \right|$$
 8. $\overline{(3+4i)(1-i)}$ 9. $\overline{e^{i\frac{\pi}{3}}}$

Convert the following from rectangular to polar form.

10. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ 11. i - 1 12. $\frac{i}{1+i}$

Convert the following from polar to rectangular form.

13.
$$e^{5\pi i/3}$$
 14. $e^{-\pi i/4}$ 15. $(\sqrt{3} e^{7\pi i/12})(\sqrt{12} e^{29\pi i/12})$

Convert to polar or rectangular form to evaluate the following.

16. $\sqrt{2i}$ 17. i^i 18. Re $(2e^{\pi i/6})$ 19. $(i-1)^6$

Name: _____

- 20. We are going to find the roots of the polynomial equation $z^2 + 2z + (1 i) = 0$ two ways.
 - (a) Re-write the equation as $z^2 + 2z + 1 = i$ and factor the left hand side (which is a perfect square). Then take the square root of both sides. Remember that all non-zero complex numbers have two square-roots!

(b) Now use the quadratic formula $z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Do you get the same answer as before?

- 21. An *n*-th root of unity is a number z such that $z^n = 1$. Prove that the *n*-th roots of unity are the set $\{e^{2\pi i \frac{k}{n}} : k \in \mathbb{Z}\}$.
- 22. Find all of the 4th roots of unity. How many are there? Express them in rectangular form.
- 23. If $z \in \mathbb{C}$ is a root of a polynomial p with real number coefficients, then \overline{z} is also a root of that polynomial because $p(\overline{z}) = \overline{p(z)}$. Find an example to show that this is not true for all polynomials with complex number coefficients.

24. Prove that for every $z \in \mathbb{C}$, $|z|^2 = z\overline{z}$.

25. Prove that |z| = 1 if and only if $\overline{z} = \frac{1}{z}$.