Math 444 - Homework 3

Name: _____

1. Show that $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ and $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$ for all $z \in \mathbb{C}$. Notice that the imaginary part of a complex number is actually a real number.

2. Let a_n , b_n be sequences in \mathbb{C} . If a_n converges to zero and b_n is bounded, prove that the sequence $a_n \cdot b_n$ converges to zero.

3. Suppose f and g are complex-valued functions that are both continuous in a neighborhood of $a \in \mathbb{C}$. Prove that f + g is continuous at a by proving that for any sequence z_n which converges to a, the sequence $f(z_n) + g(z_n)$ converges to f(a) + g(a). Hint: You can reference the examples we did in the Sequences and Convergence workshop.

4. Sketch a graph of the two parametric curves $\gamma_1(s) = s + 4i$ and $\gamma_2(t) = 3 + it$ with $s, t \in \mathbb{R}$. Where do the curves intersect?

5. Let $f(z) = z^2$. Sketch a graph of the curve f(2+ti) for $t \in \mathbb{R}$.

6. Consider the image of the unit circle {z ∈ C : |z| = 1} under the map g(z) = 1/(z+2). Show that the resulting set is a circle and find its center and radius. This problem is tough and my original hint wasn't great. Here is a better hint: Find the center and radius by computing g(-1) and g(1). Then prove that g(e^{iθ}) is always the same distance from the center.

7. Use the definition of derivative to show that the function f(z) = Im(z) is not differentiable anywhere.

8. Use the definition of derivative to find the derivative of $f(z) = \frac{1}{z}$.