Math 444 - Homework 9

Name:

1. Let $\gamma(t) = 2e^{2it} - e^{it}$, $0 \le t \le 2\pi$. This path loops around the origin twice as shown below. Calculate $\int_{\gamma} \frac{dz}{z}$ for this path. Hint: You can make it easier if you break the path into two simple closed curves, an inner one and an outer one, then apply the Cauchy Integral Formula.

2. Let γ be the ellipse |z - 1| + |z - 2| = 3. Use a partial fraction decomposition to calculate

$$\oint_{\gamma} \frac{z}{(z-1)(z-2)} \, dz$$

3. What if you calculate the integral in problem 2 by splitting the elliptical path into a sum of two separate integrals along positively oriented paths γ_1 and γ_2 as shown in the figure below? Find the values of $\oint_{\gamma_1} \frac{z}{(z-1)(z-2)} dz$ and $\oint_{\gamma_2} \frac{z}{(z-1)(z-2)} dz$. Check to see if the sum of these two integrals is the same as the integral in problem 2.

4. What is the sum of the geometric series $2 + \frac{3}{2}i - \frac{9}{8} - \frac{27}{32}i + \frac{81}{128} + ...?$

Use Cauchy's integral formulas (including for derivatives) to evaluate the following.

5.
$$\oint_{|z-3|=2} \frac{e^z}{z(z-3)} dz$$
6.
$$\oint_{|z|=4} \frac{e^z}{z(z-3)} dz$$
7.
$$\oint_{|z|=4} \frac{\exp(3z)}{(z-\pi i)^2} dz$$

8.
$$\oint_{|z|=3} \text{Log}(z-4i) \, dz$$
9.
$$\oint_{|z|=1} \frac{\cos(2z)}{z^3} \, dz$$
10.
$$\oint_{|z|=3} \frac{\exp(2z)}{(z-1)^2(z-2)} \, dz$$

11. Let $p(z) = (z - \frac{1}{2})(z - 2)(z - \frac{i}{2})$. What is the winding number of the path $\gamma_1(t) = p(e^{it}), 0 \le t \le 2\pi$ around the origin? What about the path $\gamma_2(t) = p(3e^{it}), 0 \le t \le 2\pi$?

12. What is the winding number of the path $\gamma(t) = 2e^{3it} + 5e^{2it} - 3e^{it}$, $0 \le t \le 2\pi$ around the origin? Hint: $\gamma(t)$ is a polynomial function of e^{it} . What are the roots of that polynomial?