Formula Sheet

Quadratic Formula

$$ax^{2} + bx + c = 0$$
 when $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

Common Angles

Principal Logarithm The argument is restricted to $(-\pi, \pi]$.

$$Log(z) = \ln |z| + i \operatorname{Arg} z$$

Cauchy's Formula for Derivatives When f is holomorphic and C is a simple closed curve around w,

$$\oint_C \frac{f(z)}{(z-w)^{n+1}} \, dz = 2\pi i \, \frac{f^{(n)}(w)}{n!}.$$

Note: When n = 0 this is Cauchy's Integral formula since 0! = 1.

Winding Number For a simple, closed, piecewise smooth curve $\gamma : [0, 2\pi] \to \mathbb{C}$ and a function f that is holomorphic in an open set containing the region enclosed by γ , the winding number of $f(\gamma(t))$ is

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = \# \text{ of zeros of } f \text{ inside } \gamma \text{ counting multiplicity.}$$

Common Maclaurin Series

•
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

• $\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$

•
$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

•
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$