Idea: Use a regression or possibly a logistic regression model to develop guidelines for predicting student success in Math 140 and 141.

The lines in the charts on the left indicate where the predicted grade is a B (3.0), C (2.0), or D (1.0). The lines in the charts on the right indicate where the logistic regression model predicts that students have a 25, 50, or 75% chance of passing.

Linear Regression Equations

Logistic Regression Equations

Predictors for Incoming Freshman

Since incoming freshman don’t usually take Math 140, but they do take 141, it would be useful to consider how well High School GPA serves as a substitute for College GPA as a predictor of success in Math 141. The adjusted \(R^2\) for this is considerably worse: only 24.1% compared with 36.6% using College GPA.

##                 Estimate  Std. Error   t value     Pr(>|t|)
## (Intercept) -4.377663048 0.942766192 -4.643424 7.196613e-06
## SATmath      0.005903249 0.001289586  4.577630 9.509134e-06
## HSgpa        0.870758174 0.186526812  4.668274 6.473155e-06

Equations


Math 140 Details

Below is the data for almost all currently enrolled students who have taken Math 140. Students without SAT scores or ALEKS scores are omitted.

##    SATmath SATverbal HSgpa HSCgpa Math140grade ALEKS points passing
## 11     570       530   3.6  2.812           C+    61    2.3    TRUE
## 18     635       620   3.6  3.212           A-    79    3.7    TRUE
## 30     630       530   2.7  2.653            C    70    2.0    TRUE
## 36     590       520   3.0  2.154            C    79    2.0    TRUE
## 38     610       550   3.9  2.531           D+    75    1.3   FALSE
## 40     620       755   3.3  2.901           A-    72    3.7    TRUE
##     SATmath        SATverbal         HSgpa           HSCgpa     
##  Min.   :400.0   Min.   :370.0   Min.   :2.100   Min.   :1.656  
##  1st Qu.:511.2   1st Qu.:495.0   1st Qu.:3.100   1st Qu.:2.611  
##  Median :552.5   Median :540.0   Median :3.450   Median :2.908  
##  Mean   :552.4   Mean   :544.3   Mean   :3.487   Mean   :2.875  
##  3rd Qu.:595.0   3rd Qu.:590.0   3rd Qu.:3.900   3rd Qu.:3.185  
##  Max.   :735.0   Max.   :760.0   Max.   :4.500   Max.   :3.971  
##                                                                 
##   Math140grade     ALEKS           points       passing       
##  C      :22    Min.   : 0.00   Min.   :0.000   Mode :logical  
##  A      :19    1st Qu.:66.00   1st Qu.:1.775   FALSE:34       
##  B      :19    Median :75.00   Median :2.500   TRUE :100      
##  B-     :13    Mean   :72.63   Mean   :2.407                  
##  C+     :11    3rd Qu.:80.00   3rd Qu.:3.300                  
##  W      :10    Max.   :97.00   Max.   :4.000                  
##  (Other):40

Linear Regression

## 
## Call:
## lm(formula = points ~ SATverbal + SATmath + HSgpa + HSCgpa + 
##     ALEKS, data = data140)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.75328 -0.44208  0.05868  0.54367  1.89957 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.5500025  0.8472473  -3.010 0.003150 ** 
## SATverbal   -0.0022628  0.0012008  -1.884 0.061780 .  
## SATmath      0.0049209  0.0013582   3.623 0.000418 ***
## HSgpa       -0.4683819  0.1741631  -2.689 0.008114 ** 
## HSCgpa       1.7699985  0.2069662   8.552 3.16e-14 ***
## ALEKS        0.0002094  0.0057050   0.037 0.970780    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8579 on 128 degrees of freedom
## Multiple R-squared:  0.4725, Adjusted R-squared:  0.4519 
## F-statistic: 22.93 on 5 and 128 DF,  p-value: < 2.2e-16

We should also check the relationships between each variable and Math 140 grade.

And here are two graphs for the residuals.

Logistic Regression

## 
## Call:
## glm(formula = passing ~ SATverbal + SATmath + HSgpa + HSCgpa + 
##     ALEKS, family = "binomial", data = data140)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5907  -0.2761   0.3594   0.6814   1.8212  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -7.712099   2.947804  -2.616  0.00889 ** 
## SATverbal   -0.008052   0.003795  -2.122  0.03384 *  
## SATmath      0.012356   0.004594   2.690  0.00715 ** 
## HSgpa       -0.966768   0.588576  -1.643  0.10048    
## HSCgpa       3.518613   0.784037   4.488  7.2e-06 ***
## ALEKS        0.001210   0.015649   0.077  0.93835    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 151.79  on 133  degrees of freedom
## Residual deviance: 113.18  on 128  degrees of freedom
## AIC: 125.18
## 
## Number of Fisher Scoring iterations: 5

Math 141 Details

Below is the data for all currently enrolled students who have taken Math 141.

##    SATmath SATverbal HSgpa HSCgpa Math141grade ALEKS points passing
## 5      510       550   3.8  3.399            W    86    0.0   FALSE
## 7      630       620   4.1  3.240           A-    71    3.7    TRUE
## 12     610       520   3.4  2.741           D+    72    1.3   FALSE
## 13     470       480   3.5  3.124            W    39    0.0   FALSE
## 20     780       760   4.4  3.979            A    82    4.0    TRUE
## 28     755       675   4.2  2.993            A    87    4.0    TRUE
##     SATmath        SATverbal         HSgpa           HSCgpa     
##  Min.   :470.0   Min.   :390.0   Min.   :2.100   Min.   :0.000  
##  1st Qu.:553.8   1st Qu.:510.0   1st Qu.:3.400   1st Qu.:2.709  
##  Median :605.0   Median :580.0   Median :3.700   Median :3.087  
##  Mean   :599.7   Mean   :576.3   Mean   :3.709   Mean   :3.007  
##  3rd Qu.:640.0   3rd Qu.:631.2   3rd Qu.:4.000   3rd Qu.:3.399  
##  Max.   :780.0   Max.   :775.0   Max.   :4.800   Max.   :3.979  
##                                                                 
##   Math141grade     ALEKS           points       passing       
##  B      :17    Min.   :31.00   Min.   :0.000   Mode :logical  
##  A      :16    1st Qu.:73.00   1st Qu.:1.700   FALSE:38       
##  W      :15    Median :76.00   Median :2.700   TRUE :94       
##  A-     :14    Mean   :76.35   Mean   :2.353                  
##  B-     :14    3rd Qu.:81.00   3rd Qu.:3.300                  
##  C      :12    Max.   :94.00   Max.   :4.000                  
##  (Other):44

Linear Regression

## 
## Call:
## lm(formula = points ~ SATverbal + SATmath + HSgpa + HSCgpa + 
##     ALEKS, data = data141)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7084 -0.5253  0.2316  0.6560  1.8473 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.727214   1.249792  -3.782 0.000239 ***
## SATverbal   -0.001169   0.001453  -0.805 0.422541    
## SATmath      0.006559   0.001663   3.945 0.000132 ***
## HSgpa        0.230274   0.206014   1.118 0.265796    
## HSCgpa       1.025851   0.150871   6.800 3.76e-10 ***
## ALEKS       -0.001559   0.012033  -0.130 0.897125    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9972 on 126 degrees of freedom
## Multiple R-squared:   0.44,  Adjusted R-squared:  0.4178 
## F-statistic:  19.8 on 5 and 126 DF,  p-value: 1.589e-14

We should also check the relationships between each variable and Math 141 grade.

And here are two graphs for the residuals.

Logistic Regression

For Math 141, verbal SATs are the least significant predictor of success. ALEKS scores are also not significant, and neither are high school GPAs. So we get the following simple logistic regression model.

## 
## Call:
## glm(formula = passing ~ SATverbal + SATmath + HSgpa + HSCgpa + 
##     ALEKS, family = "binomial", data = data141)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0766  -0.3875   0.3507   0.6451   1.8604  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -12.499761   3.965436  -3.152 0.001621 ** 
## SATverbal    -0.002923   0.003874  -0.754 0.450557    
## SATmath       0.015708   0.005158   3.046 0.002322 ** 
## HSgpa         1.007975   0.606391   1.662 0.096462 .  
## HSCgpa        1.680329   0.489591   3.432 0.000599 ***
## ALEKS        -0.035862   0.034807  -1.030 0.302867    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 158.46  on 131  degrees of freedom
## Residual deviance: 110.52  on 126  degrees of freedom
## AIC: 122.52
## 
## Number of Fisher Scoring iterations: 5