
The View Frustum
Lecture 9

Sections 2.6, 5.1, 5.2

Robb T. Koether

Hampden-Sydney College

Wed, Sep 14, 2011

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 1 / 36



Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 2 / 36



Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 3 / 36



The View Frustum

Definition (Frustum)
A frustum is a truncated pyramid.

Definition (The View Frustum)
The view frustum is the region of world coordinate space that contains
the part of the scene that will be rendered.

The view frustum is bounded by six planes.
Left and right planes
Top and bottom planes
Near and far planes

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 4 / 36



Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 5 / 36



Creating the View Frustum

The function gluPerspective() establishes the size and shape
(but not the position) of the view frustum.
It takes four parameters.

The vertical view angle.
The aspect ratio (width/height).
The distance to the near plane.
The distance to the far plane.

This function produces the projection matrix and multiplies it by
the current projection matrix.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 6 / 36



Creating the View Frustum

Eye

Top plane

Far distance

Near distance

Near plane

Far plane

Bottom planeView angle

Side view of the view frustum.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 7 / 36



Creating the View Frustum

Width

Top plane

Le
ft 

pl
an

e

Bottom plane

R
ight planeH

ei
gh

t

Aspect Ratio = Width/Height

Front view of the view frustum, from the eye point.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 8 / 36



Creating the View Frustum

The aspect ratio is the width divided by the height.
Typical aspect ratios are 4/3 and 5/4.
For example, if the screen has a resolution of 1024× 768, then its
aspect ratio is 4/3.

gluPerspective(45.0, 4.0/3.0, 1.0, 1000.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 9 / 36



Creating the View Frustum

Example (Creating the View Frustum)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, 4.0/3.0, 1.0, 1000.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 10 / 36



Creating the View Frustum

The view frustum for a perspective projection may also be created
using the function glFrustum().

glFrustum(left, right, bottom, top,
near, far);

left, right, top, and bottom are the x and y boundary values
at the near plane.
near and far are always given as positive distances from the
viewpoint.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 11 / 36



Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 12 / 36



Orthogonal Projections

The view frustum produces a perspective view on the screen.
The eye is at the center of the projection.

On the other hand, an orthogonal projection projects along
parallel lines.

It is as though the view point is at infinity.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 13 / 36



Orthogonal Projections

To create an orthogonal projection, use gluOrtho() instead of
gluPerspective().

glOrtho(left, right, bottom, top,
near, far);

Again, near and far are always given as positive distances from
the viewpoint.
left, right, top, and bottom are the x and y coordinates of
the planes.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 14 / 36



Perspective and Orthogonal Projections

Example (Perspective and Orthogonal Projections)
The code.
The executable.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 15 / 36

file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 2.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 2.exe


Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 16 / 36



Positioning the View Frustum

The function gluLookAt() positions the view frustum in space.
It takes nine parameters, representing two points and a vector,
expressed in world coordinates.

The eye point, or position of the camera.
The look point.
The up vector, or orientation.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 17 / 36



Positioning the View Frustum

In eye coordinates,
The eye point is at (0,0,0),
The look point is (0,0,−1),
The up vector is (0,1,0).

The gluLookAt() function computes the transformation matrix
from world coordinates to eye coordinates.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 18 / 36



Positioning the View Frustum

In world coordinates,
The eye point is wherever we want the camera to be.
The look point is often the origin.
The up vector is almost always (0,1,0).

gluLookAt(5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 19 / 36



Positioning the View Frustum

In world coordinates,
The eye point is wherever we want the camera to be.
The look point is often the origin.
The up vector is almost always (0,1,0).

gluLookAt(5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 20 / 36



Positioning the View Frustum

In world coordinates,
The eye point is wherever we want the camera to be.
The look point is often the origin.
The up vector is almost always (0,1,0).

gluLookAt(5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 21 / 36



Positioning the View Frustum

In world coordinates,
The eye point is wherever we want the camera to be.
The look point is often the origin.
The up vector is almost always (0,1,0).

gluLookAt(5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 22 / 36



Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 23 / 36



The View Matrix

The gluLookAt() function creates the view matrix and multiplies
the current matrix by it.
The result is the modelview matrix.
In a literal sense, it “moves” the entire scene, thereby creating the
illusion that the camera has moved.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 24 / 36



The View Matrix

For this reason, it is important to call gluLookAt()
after loading the identity matrix and
before performing any other transformations.

Typically, this is one of the first things done in the display()
function.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 25 / 36



Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 26 / 36



Controlling the Camera Position

The camera may be movable or fixed.
If it is movable, then it is usually controlled by spherical
coordinates with the look point at the center.

Distance from the look point (camDist).
Pitch angle (camPitch).
Yaw angle (camYaw).

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 27 / 36



Controlling the Camera Position

The following formulas compute the x , y , and z coordinates of the
camera.

x = r cosϕ sin θ
y = r sinϕ
z = r cosϕ cos θ

where r = distance, ϕ = pitch angle, and θ = yaw angle.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 28 / 36



Controlling the Eye Position

Example (Controlling the Eye Position)
// Convert degrees to radians

float yaw = camYaw*PI/180.0;
float pitch = camPitch*PI/180.0;

// Compute rectangular coordinates
float eye.x = camDist*cos(pitch)*sin(yaw);
float eye.y = camDist*sin(pitch);
float eye.z = camDist*cos(pitch)*cos(yaw);

// Position the camera
gluLookAt(eye.x, eye.y, eye.z,

look.x, look.y, look.z,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 29 / 36



The keyboard() Function

Example (The keyboard() Function)
void keyboard(unsigned char key, int x, int y)
{

switch (key)
{

case ’+’: case ’=’:
camDist /= zoomFactor;
break;

case ’-’: case ’_’:
camDist *= zoomFactor;
break;

...
}
glutPostRedisplay();
return;

}

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 30 / 36



The special() Function

Example (The special() Function)
void special(int key, int x, int y)
{

switch (key)
{

case GLUT_KEY_LEFT:
camYaw -= yawIncr;
break;

case GLUT_KEY_RIGHT:
camYaw += yawIncr;
break;

...
}
glutPostRedisplay();
return;

}

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 31 / 36



Controlling the Camera Position

Example (Controlling the Camera Position)
The code.
The executable.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 32 / 36

file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 3.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 3.exe


Controlling the Look Point

In a similar way we can control the look point instead of the
camera location.
The mouse to make the camera to pan left, right, up, or down.
The + and − keys move the camera (and the look point) forward
or backward.
How do we calculate the x , y , and z coordinates of the look point?

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 33 / 36



Controlling the Look Point

Example (Controlling the Look Point)
The code.
The executable.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 34 / 36

file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 4.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 4.exe


Outline

1 The View Frustum

2 Creating the Projection Matrix

3 Orthogonal Projections

4 Positioning the Camera

5 Creating the View Matrix

6 Controlling the Camera

7 Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 35 / 36



Homework

Homework
Read Section 2.6 – orthographic viewing.
Read Sections 5.1 - 5.2 – perspective viewing.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 36 / 36


	The View Frustum
	Creating the Projection Matrix
	Orthogonal Projections
	Positioning the Camera
	Creating the View Matrix
	Controlling the Camera
	Assignment

