Robb T. Koether

Hampden-Sydney College

Wed, Sep 14, 2011

«40>» «F)>r « > = E vQ



Outline

ﬂ The View Frustum

e Creating the Projection Matrix
e Orthogonal Projections

0 Positioning the Camera

e Creating the View Matrix

G Controlling the Camera

e Assignment

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 2/36



@ The View Frustum

9 Creating the Projection Matrix
© Orthogonal Projections

Q Positioning the Camera

Q Creating the View Matrix

0 Controlling the Camera

o Assignment

«O0>» «F» «E» « E>» = Q>



The View Frustum

Definition (Frustum)
A frustum is a truncated pyramid.

Definition (The View Frustum)
The view frustum is the region of world coordinate space that contains
the part of the scene that will be rendered.

@ The view frustum is bounded by six planes.
o Left and right planes
e Top and bottom planes
e Near and far planes

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 4/36



@ The View Frustum

e Creating the Projection Matrix
Q Orthogonal Projections

Q Positioning the Camera

Q Creating the View Matrix

0 Controlling the Camera

@ Assignment

«40>» «F)>r «=) « > = Q>



Creating the View Frustum

@ The function gluPerspective () establishes the size and shape
(but not the position) of the view frustum.
@ It takes four parameters.
e The vertical view angle.
e The aspect ratio (width/height).
e The distance to the near plane.
e The distance to the far plane.
@ This function produces the projection matrix and multiplies it by
the current projection matrix.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 6/36



Far distance

! Near distance

\ane
—— o T
Eye Z//g e Near plane %
Bo ®
View angle o Plane

Side view of the view frustum.

«0O>» «F)»r «=)» « =)

12N G4



Top plane
o Width P
g = S
a =y =
e 2 e
© I )
- )

Bottom plane
Aspect Ratio = Width/Height

Front view of the view frustum, from the eye point.

> E A®

«0O0)» «F» « =) «



Creating the View Frustum

@ The aspect ratio is the width divided by the height.
@ Typical aspect ratios are 4/3 and 5/4.

@ For example, if the screen has a resolution of 1024 x 768, then its
aspect ratio is 4/3.

gluPerspective (45.0, 4.0/3.0, 1.0, 1000.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 9/36



glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
gluPerspective (45.0, 4.0/3.0, 1.0, 1000.0);

The View Frustum

Wed, Sep 14, 2011

12N G4
10/36




Creating the View Frustum

@ The view frustum for a perspective projection may also be created
using the function g1Frustum ().

glFrustum(left, right, bottom, top,
near, far);

@ left, right, top, and bottom are the x and y boundary values
at the near plane.

@ near and far are always given as positive distances from the
viewpoint.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 11/36



@ The View Frustum

9 Creating the Projection Matrix
e Orthogonal Projections

Q Positioning the Camera

Q Creating the View Matrix

0 Controlling the Camera

o Assignment

«O0>» «F» «E» « E>» = Q>



Orthogonal Projections

@ The view frustum produces a perspective view on the screen.
e The eye is at the center of the projection.

@ On the other hand, an orthogonal projection projects along
parallel lines.

o ltis as though the view point is at infinity.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 13/36



Orthogonal Projections

@ To create an orthogonal projection, use gluOrtho () instead of
gluPerspective ().

glOrtho(left, right, bottom, top,
near, far);

@ Again, near and far are always given as positive distances from
the viewpoint.

@ lert, right, top, and bottom are the x and y coordinates of
the planes.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 14 /36



Perspective and Orthogonal Projections

@ The code.

@ The executable.

Robb T. Koether (Hampden-Sydney College)

The View Frustum

12N G4
Wed, Sep 14, 2011 15/36


file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 2.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 2.exe

@ The View Frustum

9 Creating the Projection Matrix
Q Orthogonal Projections

° Positioning the Camera

Q Creating the View Matrix

0 Controlling the Camera

o Assignment

«O0>» «F» «E» « E>» = Q>



Positioning the View Frustum

@ The function gluLookAt () positions the view frustum in space.
@ It takes nine parameters, representing two points and a vector,
expressed in world coordinates.

e The eye point, or position of the camera.
e The look point.
e The up vector, or orientation.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 17 /36



Positioning the View Frustum

@ In eye coordinates,
e The eye point is at (0,0, 0),
@ The look pointis (0,0, —1),
e The up vectoris (0, 1,0).
@ The gluLookAt () function computes the transformation matrix
from world coordinates to eye coordinates.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 18/36



Positioning the View Frustum

@ In world coordinates,
e The eye point is wherever we want the camera to be.
e The look point is often the origin.
e The up vector is almost always (0, 1,0).

gluLookAt (5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 19/36



Positioning the View Frustum

@ In world coordinates,
e The eye point is wherever we want the camera to be.
e The look point is often the origin.
e The up vector is almost always (0, 1,0).

gluLookAt (5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 20/36



Positioning the View Frustum

@ In world coordinates,
e The eye point is wherever we want the camera to be.
e The look point is often the origin.
e The up vector is almost always (0, 1,0).

gluLookAt (5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 21/36



Positioning the View Frustum

@ In world coordinates,
e The eye point is wherever we want the camera to be.
e The look point is often the origin.
e The up vector is almost always (0, 1,0).

gluLookAt (5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 22/36



@ The View Frustum

9 Creating the Projection Matrix
Q Orthogonal Projections

Q Positioning the Camera

e Creating the View Matrix

0 Controlling the Camera

@ Assignment

«40>» «F)>r «=) « > = Q>



The View Matrix

@ The gluLookAt () function creates the view matrix and multiplies
the current matrix by it.

@ The result is the modelview matrix.

@ In a literal sense, it “moves” the entire scene, thereby creating the
illusion that the camera has moved.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 24/36



The View Matrix

@ For this reason, it is important to call gluLookAt ()

e afterloading the identity matrix and
e before performing any other transformations.

@ Typically, this is one of the first things done in the display ()
function.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 25/36



@ The View Frustum

9 Creating the Projection Matrix
Q Orthogonal Projections

Q Positioning the Camera

Q Creating the View Matrix

@ Controlling the Camera

o Assignment

«O0>» «F» «E» « E>» = Q>



Controlling the Camera Position

@ The camera may be movable or fixed.

@ If it is movable, then it is usually controlled by spherical
coordinates with the look point at the center.
e Distance from the look point (camDist).
e Pitch angle (camPitch).
@ Yaw angle (camYaw).

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 27/36



Controlling the Camera Position

@ The following formulas compute the x, y, and z coordinates of the

camera.
X = rcosepsing
y = rsingp
Z = rcospcosé

where r = distance, ¢ = pitch angle, and 6 = yaw angle.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 28/36



Controlling the Eye Position

// Convert degrees to radians
float yaw = camYawxPI/180.0;
float pitch = camPitch*PI/180.0;

// Compute rectangular coordinates
float eye.x = camDistxcos (pitch) *sin(yaw) ;
float eye.y = camDistxsin (pitch);
float eye.z camDist*cos (pitch) xcos (yaw) ;

// Position the camera
gluLookAt (eye.x, eye.y, eye.z,
look.x, look.y, look.z,
0.0, 1.0, 0.0);

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011

29/36



The keyboard () Function

void keyboard (unsigned char key, int x, int y)

{
switch (key)
{
case '+’ : case
camDist /=
break;
case ’'-': case
camDist *=
break;

}

r—r .
zoomFactor;

14 r .

zoomFactor;

glutPostRedisplay () ;

return;

Robb T. Koether (Hampden-Sydney College)

The View Frustum Wed, Sep 14, 2011

30/36



The special () Function

void special (int key, int x, int y)
{

switch (key)

{

case GLUT_KEY LEFT:

camYaw —= yawlncr;
break;
case GLUT_KEY_RIGHT:
camYaw += yawlIncr;
break;

}

glutPostRedisplay () ;
return;
}

Robb T. Koether (Hampden-Sydney College)

The View Frustum

o

Wed, Sep 14, 2011

31/36



@ The executable.

[m]

=

Wed, Sep 14, 2011

Q>
32/36


file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 3.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 3.exe

Controlling the Look Point

@ In a similar way we can control the look point instead of the
camera location.

@ The mouse to make the camera to pan left, right, up, or down.

@ The + and — keys move the camera (and the look point) forward
or backward.

@ How do we calculate the x, y, and z coordinates of the look point?

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 33/36



@ The executable.

[m]

=

Wed, Sep 14, 2011

Q>
34/36


file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 4.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 4.exe

@ The View Frustum

9 Creating the Projection Matrix
© Orthogonal Projections

Q Positioning the Camera

Q Creating the View Matrix

0 Controlling the Camera

a Assignment

«O0>» «F» «E» « E>» = Q>



@ Read Section 2.6 — orthographic viewing.

@ Read Sections 5.1 - 5.2 — perspective viewing.




	The View Frustum
	Creating the Projection Matrix
	Orthogonal Projections
	Positioning the Camera
	Creating the View Matrix
	Controlling the Camera
	Assignment

