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The View Frustum

Definition (Frustum)
A frustum is a truncated pyramid.

Definition (The View Frustum)
The view frustum is the region of world coordinate space that contains
the part of the scene that will be rendered.

The view frustum is bounded by six planes.
Left and right planes
Top and bottom planes
Near and far planes
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Creating the View Frustum

The function gluPerspective() establishes the size and shape
(but not the position) of the view frustum.
It takes four parameters.

The vertical view angle.
The aspect ratio (width/height).
The distance to the near plane.
The distance to the far plane.

This function produces the projection matrix and multiplies it by
the current projection matrix.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 6 / 36



Creating the View Frustum

Eye

Top plane

Far distance

Near distance

Near plane
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Bottom planeView angle

Side view of the view frustum.
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Creating the View Frustum
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Aspect Ratio = Width/Height

Front view of the view frustum, from the eye point.
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Creating the View Frustum

The aspect ratio is the width divided by the height.
Typical aspect ratios are 4/3 and 5/4.
For example, if the screen has a resolution of 1024× 768, then its
aspect ratio is 4/3.

gluPerspective(45.0, 4.0/3.0, 1.0, 1000.0);
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Creating the View Frustum

Example (Creating the View Frustum)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, 4.0/3.0, 1.0, 1000.0);
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Creating the View Frustum

The view frustum for a perspective projection may also be created
using the function glFrustum().

glFrustum(left, right, bottom, top,
near, far);

left, right, top, and bottom are the x and y boundary values
at the near plane.
near and far are always given as positive distances from the
viewpoint.
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Orthogonal Projections

The view frustum produces a perspective view on the screen.
The eye is at the center of the projection.

On the other hand, an orthogonal projection projects along
parallel lines.

It is as though the view point is at infinity.
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Orthogonal Projections

To create an orthogonal projection, use gluOrtho() instead of
gluPerspective().

glOrtho(left, right, bottom, top,
near, far);

Again, near and far are always given as positive distances from
the viewpoint.
left, right, top, and bottom are the x and y coordinates of
the planes.
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Perspective and Orthogonal Projections

Example (Perspective and Orthogonal Projections)
The code.
The executable.
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Positioning the View Frustum

The function gluLookAt() positions the view frustum in space.
It takes nine parameters, representing two points and a vector,
expressed in world coordinates.

The eye point, or position of the camera.
The look point.
The up vector, or orientation.
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Positioning the View Frustum

In eye coordinates,
The eye point is at (0,0,0),
The look point is (0,0,−1),
The up vector is (0,1,0).

The gluLookAt() function computes the transformation matrix
from world coordinates to eye coordinates.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 18 / 36



Positioning the View Frustum

In world coordinates,
The eye point is wherever we want the camera to be.
The look point is often the origin.
The up vector is almost always (0,1,0).

gluLookAt(5.0, 2.0, 5.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);
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The View Matrix

The gluLookAt() function creates the view matrix and multiplies
the current matrix by it.
The result is the modelview matrix.
In a literal sense, it “moves” the entire scene, thereby creating the
illusion that the camera has moved.
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The View Matrix

For this reason, it is important to call gluLookAt()
after loading the identity matrix and
before performing any other transformations.

Typically, this is one of the first things done in the display()
function.
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Controlling the Camera Position

The camera may be movable or fixed.
If it is movable, then it is usually controlled by spherical
coordinates with the look point at the center.

Distance from the look point (camDist).
Pitch angle (camPitch).
Yaw angle (camYaw).
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Controlling the Camera Position

The following formulas compute the x , y , and z coordinates of the
camera.

x = r cosϕ sin θ
y = r sinϕ
z = r cosϕ cos θ

where r = distance, ϕ = pitch angle, and θ = yaw angle.
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Controlling the Eye Position

Example (Controlling the Eye Position)
// Convert degrees to radians

float yaw = camYaw*PI/180.0;
float pitch = camPitch*PI/180.0;

// Compute rectangular coordinates
float eye.x = camDist*cos(pitch)*sin(yaw);
float eye.y = camDist*sin(pitch);
float eye.z = camDist*cos(pitch)*cos(yaw);

// Position the camera
gluLookAt(eye.x, eye.y, eye.z,

look.x, look.y, look.z,
0.0, 1.0, 0.0);
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The keyboard() Function

Example (The keyboard() Function)
void keyboard(unsigned char key, int x, int y)
{

switch (key)
{

case ’+’: case ’=’:
camDist /= zoomFactor;
break;

case ’-’: case ’_’:
camDist *= zoomFactor;
break;

...
}
glutPostRedisplay();
return;

}
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The special() Function

Example (The special() Function)
void special(int key, int x, int y)
{

switch (key)
{

case GLUT_KEY_LEFT:
camYaw -= yawIncr;
break;

case GLUT_KEY_RIGHT:
camYaw += yawIncr;
break;

...
}
glutPostRedisplay();
return;

}
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Controlling the Camera Position

Example (Controlling the Camera Position)
The code.
The executable.

Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 32 / 36

file://Hams-acad-fs/coms 331/Koether/Demos/Source Code/Lecture 9/Lecture 9 Demo 3.cpp
file://Hams-acad-fs/coms 331/Koether/Demos/Executables/Lecture 9/Lecture 9 Demo 3.exe


Controlling the Look Point

In a similar way we can control the look point instead of the
camera location.
The mouse to make the camera to pan left, right, up, or down.
The + and − keys move the camera (and the look point) forward
or backward.
How do we calculate the x , y , and z coordinates of the look point?
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Controlling the Look Point

Example (Controlling the Look Point)
The code.
The executable.
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Homework

Homework
Read Section 2.6 – orthographic viewing.
Read Sections 5.1 - 5.2 – perspective viewing.
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