The Symbol
Table

The Symbol Table

Lecture 13
Section 7.6

Robb T. Koether

Hampden-Sydney College

Wed, Feb 25, 2009

Outline

The Symbol
Table

@ The Symbol Table
e Symbol Table Entries
e Symbol Table Functions
@ The Symbol Table Structure
© Hash Tables

@ The put () Function

@ The get () Function

e Assignment

The Symbol Table

e @ When identifiers are found, they will be entered into a

i symbol table, which will hold all relevant information
e about identifiers.
Ls Sues @ This information will be used later by the semantic

analyzer and the code generator.

Lexical Syntax Semantic Code
Analyzer Analyzer Analyzer Generator
Symbol

Table

Symbol Table Entries

The Symbol
Table

T

@ We will store the following information about identifiers.
Eﬂﬁzl e e The name (as a string).
o The data type.
e The block level.
e The scope (global, local, or parameter).
e The offset from the base pointer (for local variables and
parameters only).

Symbol Table Entries

The Symbol
Table

@ This information is stored in an object called an
Symbol Table
Entries IdEntry.

@ This information may not all be known at once.

@ We may begin by knowing only the name and data
type, and then later learn the block level, scope, and
the offset.

Symbol Table Functions

The Symbol
Table

Robb T.

Koether

Symbol Table Functions

@ IdEntry install (String s, int blkLev)
Install a new symbol in the symbol table.
Symbol Table

Functions @ IdEntry idLookup (String s, int blkLev)
Return a reference to a symbol that is in the table.

@ The two most basic symbol table functions are the ones
that insert a new symbol and lookup an old symbol.

Inserting a Symbol

The Symbol
Table

T

@ The install () function will insert a new symbol into
the symbol table.
@ Each symbol has a block level.
Symbol Table i
Functions o Block level 1 contains keywords.
o Block level 2 contains global variables.
@ Block level 3 contains parameters and local variables.
@ install () will create an IdEntry object and store it
in the table.

Inserting a Symbol

The Symbol
Table Contexts

Robb T. q
Koether int count;

int func(int sum, float count);
int count (int number) ;

int main ()

{

Symbol Table int count;
Functions

@ When the symbol is first encountered by the lexer, we
do not yet know the scope or type.

@ That is determined later by the parser.

@ For example, we could first encounter the symbol
count in any of several contexts.

Looking up a Symbol

The Symbol
Table

Robb T.
Koether

@ Whenever a symbol is encountered, we must look it up
in the symbol table.
e If it is the first encounter, then idLookup () will return

Symbol Table null.
Functions e If it is not the first encounter, then idLookup () will

return a reference to the I1dEnt ry for that identifier
found in the table.

@ Once we have the IdEntry object entered in the
symbol table, we may add information to it.

Looking up a Symbol

The Symbol
Table

@ Since a variable should be declared when it first

appears,
Symbol Table e If the parser is parsing a declaration, then it expects
Functions idLookup () to return null.

o If the parser is not parsing a declaration, then it expects
idLookup () to return non-null.

@ In each case, anything else is an error.

Block Levels

The Symbol
Table

Robb T.
Koether

@ Keywords, global variables, and local variables are
stored at different block levels.

@ C and C++ recognize further levels (blocks) within
el functions, delimited by braces { }.

@ However, in C, variables local to a block must be
declared at the beginning of the block.

@ Every time we enter a block, the block level increases
by 1 and every time we leave a block, it decreases by 1.

Structure of the Symbol Table

The Symbol
Table

Robb T.
Koether

@ We will implement the symbol table as a linked list of
hash tables, one hash table for each block level.

Egls‘ymbo' — Level 3 Level 2 Level 1 Level 0

Structure

Hash table Hash table Hash table
of of of null
Locals Globals Keywords

Structure of the Symbol Table

The Symbol
Table

@ Initially, we create a null hash table at level 0.

The Symbol —| Level0
Table
Structure

null

Structure of the Symbol Table

The Symbol
Table

Robb T.
Koether

@ Then we increase the block level and install the
keywords in the symbol table at level 1.

The Symbol — Levell Level 0
Table

Structure

Hash table
of null

Keywords

Structure of the Symbol Table

The Symbol

@ Then we increase the block level and install the globals
at level 2.

The Symbol — Level 2 Level 1 Level 0
Table

Structure

Hash table Hash table
of null

of
Globals Keywords

Structure of the Symbol Table

The Symbol

@ When we enter a function, we create a level 3 hash
table and store parameters and local variables there.

Eglsymbo' — Level 3 Level 2 Level 1 Level O

Structure

Hash table Hash table Hash table
of of of null
Locals Globals Keywords

Structure of the Symbol Table

The Symbol

@ When we leave the function, the hash table of local
variables is deleted from the list.

The Symbol — Level 2 Level 1 Level 0
Table

Structure

Hash table Hash table
of null

of
Globals Keywords

Structure of the Symbol Table

The Symbol

@ If we enter another function, a new level 3 hash table is
created.

Eglsymbo' — Level 3 Level 2 Level 1 Level 0

Structure

Hash table Hash table Hash table
of of of null
Locals Globals Keywords

Structure of the Symbol Table

The Symbol

@ When we look up an identifier, we begin the search at
the head of the list.

The Symbol -
Tabl ._sxel 3 Level 2 Level 1 Level O
Structure *
Hash table Hash table Hash table
of of of null

Locals Globals Keywords

Structure of the Symbol Table

The Symbol

@ If it is not found there, then the search continues at the
lower levels.

E&symbm tevetS Ls‘el 2 Level 1 Level 0

Structure +

Hash table Hash table Hash table
of of of null
Locals Globals Keywords

Structure of the Symbol Table

The Symbol

@ Keywords are found in the level 1 hash table.

Egljymb‘)' evel3 evet2 toyel 1 Level O
Structure *
Hash table Hash table Hash table
of of of null

Locals Globals Keywords

Looking up a Symbol

The Symbol
Table

T

@ If an identifier is declared both globally and locally,
which one will be found when it is looked up?

@ If an identifier is declared only globally and we are in a

The Symbol function, how will it be found?
Table

Structure @ How do we prevent the use of a keyword as a variable
name?

Distinguishing Between Keywords and
|dentifiers

The Symbol
Table

T

@ The keywords are installed at level 1 before the lexer
begins.

@ When the lexer finds an “identifier,” it looks it up in the

symbol table.

The Symbol

g??u'itzre o If it finds it at level 1, it returns the appropriate keyword
token.

@ Otherwise, it returns an identifier token.

Distinguishing Between Keywords and
|dentifiers

The Symbol
Table

Robb T.
Koether

@ The benefit of this is that it greatly simplifies the lexer.

@ For example, imagine writing a regular expression that
accepts i and i ff, butnot if.

@ The regular expression for true identifiers would be

The Symbol i i
W immensely complicated.

sietre @ However, in JLex, we could list the regular expressions
of the keywords first, then the regular expression for
identifiers.

Hash Tables

The Symbol
Table

Lol Definition (Hash Table)
A hash table is a list in which each member is accessed
through a key.

@ The key is used to determine where to store the value
in the table.

@ The function that produces a location from the key is
called the hash function.

@ For example, if it were a hash table of strings, the hash
function might compute the sum of the ASCII values of
the first 5 characters of the string, modulo the size of
the table.

Hash Tables

Hash Tables

The Symbol
Table

Robb T.
Koether

@ The numerical value of the hashed key gives the
location of the member.

@ Thus, there is no need to search for the member; the
hashed key tells where it is located.

@ For example, if the string were “return”, then the key
would be

Hash Tables (114 + 101 + 116 + 117 + 114) % 100 = 62.

@ Thus, “return” would be located in position 62 of the
hash table.

Clashes and Buckets

The Symbol
Table

Robb T.

o Definition (Clash)
A clash occurs when two entries have the same key.

@ Clearly, there is the possibility of a clash.

@ In that case, the hash table creates a list, called a
bucket, of those values in the table with that same
location.

@ When that location comes up, the list is searched.

@ However, it is generally a very short list, especially if the
table size has been chosen well.

Hash Tables

Hash Table Efficiency

The Symbol
Table

@ The two parameters that determine how efficiently the
hash table performs are

e The capacity - The number of buckets.
e The load factor - How full the hash table is.

Hash Tables

Hash Table Efficiency

The Symbol
Table

T

@ For a given hash table capacity,

o If there are too many buckets, then many buckets will
not be used, leading to space inefficiency.

o If there are too few buckets, then there will be many
clashes, causing the searches to degenerate into
predominately sequential searches, leading to time

Hash Tables inefficiency.

Hash Tables in Java

The Symbol
Table

@ Java has a Hashtable class.

@ Look it up on the web to see what its member functions
are.

@ The Java Hashtable class will use its own hash
function to hash the keys.

@ It will manage its capacity and load factor automatically.

@ The two most important Hashtable functions for us
are put () and get ().

Hash Tables

Hash Tables in Java

The Symbol
Table

Robb T.
Koether

The put () Function
Object put (Object key, Object wvalue);

@ When we make the function call put (key, wvalue),
the hashtable will
e Hash key to compute the location.
e Insert value into the appropriate bucket.
e Handle any clashes.

The put () Function

Hash Tables in Java

The Symbol
Table

Robb T.
Koether

The get () Function
Object get (Object key);

@ When we make the function call get (key), the
hashtable will
e Hash key to compute the location.
e Return the value that matches the key.

The get () Function

String Tables

The Symbol
Table

Robb T.
Koether

@ Compilers generally create a table of strings.

@ These strings are the “names” of the identifiers,
keywords, and other strings used in the program.

@ Thus, if the same string is used for several different
identifiers, the string will be stored only once in the
string table.

@ Each symbol table entry will include a pointer to the
string in the string table.

@ For simplicity, we will not use a string table.

Assignment

The Symbol
Table

@ Read Section 7.6, pages 429 - 440. I

Assignment

	The Symbol Table
	Symbol Table Entries
	Symbol Table Functions
	The Symbol Table Structure
	Hash Tables
	The put() Function
	The get() Function

	Assignment

