The x87 Floating-Point Unit

> Robb T. Koether

The x87 FPL Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The x87 Floating-Point Unit Lecture 18 Intel Manual, vol. 1, Chapter 8

Robb T. Koether

Hampden-Sydney College

Wed, Mar 25, 2009

Outline

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The x87 FPU Architecture

The FPU Registers and Stack

(2) The FPU Status Register and Rounding

4 The x87 Instruction Set

・ロ・・中・・中・・ 中・ シック・

Floating-Point Data Types

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- The x87 Floating Point Unit (FPU) recognizes three floating-point types.
 - float single precision, 32 bits.
 - double double precision, 64 bits.
 - long double double extended precision, 80 bits.

- We will use the type double in our compiler.
- However, in the FPU, all calculations will be as long doubles.

The FPU Status Register

The x87 Floating-Point Unit

> Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- The 16-bit status register contains a number of bit fields that are set by floating-point instructions, including a 3-bit field TOP that points to the top of the FPU stack.
- The size of the stack is 8; TOP holds a value from 0 to 7.
- We will have use later for the bit fields C0, C1, C2, and C3, which are condition codes containing information about the most recent floating-point operation.

The FPU Control Word

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

• The 16-bit control word contains a number of bit fields, including

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- A 2-bit field PC that controls precision.
- A 2-bit field RC that controls rounding.

The PC Field

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The PC settings

- 00 = single precision.
- 10 = double precision.
- 11 = double extended-precision.
- The default is double extended-precision.

The RC Field

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The RC settings

- 00 = Round to nearest.
- 01 = Round down (towards $-\infty$).
- 10 = Round up (towards $+\infty$).
- 11 = Round towards zero.
- The default is round to nearest.
- Therefore, when we convert a **double** to an **int**, the value will be rounded, not truncated.

The x87 FPU Architecture

The x87 Floating-Point Unit

> Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- The FPU has 8 general purpose 80-bit (double extended-precision) registers.
- They are labeled st(0), st(1),..., st(7).
- They are organized as a stack, with st(0) on top.
- Typically, floating-point operations pop values off the stack and push results onto the stack.
- However, many instructions allow us to access any position in the stack.

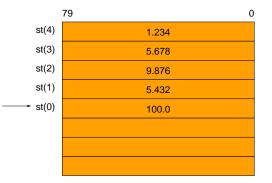
The FPU Stack

Тор

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture


The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

• Register st (0) is always on top of the stack.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

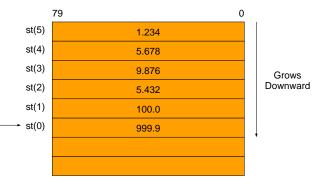
The FPU Stack

Top ·

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture


The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

• When we push, st (0) moves to the next register.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The FPU Stack

Тор

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

• When we pop, st (0) moves to the previous register.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

The x87 Instruction Set

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- We will be interested in three categories of instruction.
 - Data transfer.
 - Basic arithmetic.
 - Comparisons.
- Other categories are
 - Transcendental instructions (trig, exponential, and logarithmic functions).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Loading constants (0, 1, π , $\log_2 10$, etc.)

Data Transfer - Load

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fld Load Instruction

fld *src*

- Pushes the floating-poing value at *src* onto the FPU stack.
- The operand *src* may be a memory address or an FPU register st (*i*). It cannot be a non-FPU register.

- Examples
 - fld avg
 - fld (%esp)

Data Transfer - Load

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fild Integer Load Instruction

fild src

• Converts the integer at *src* to double extended-precision and pushes it onto the FPU stack. The operand *src* is a memory address.

- Examples
 - fild count
 - fild (%esp)

The x87 Instruction Set

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

• Many FPU instructions come in two versions.

- The basic instruction: FXXX.
- The same instruction, followed by popping the FPU stack: FxxxP.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Data Transfer - Store

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fild Integer Load Instruction

fst *dst* fstp *dst*

- fst transfers the value at st (0) to *dst*. The operand *dst* may be a memory address or an FPU register st (*i*).
- fstp is the same, except that it also pops the value off the FPU stack.

- Examples
 - fst avg
 - fstp avg

Data Transfer - Store

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fist Integer Store Instruction

fist *dst* fistp *dst*

- fist transfers the value at st (0) to *dst* and converts it to an integer. The operand *dst* is a memory address.
- fistp is the same, except that it also pops the value off the FPU stack.

- Examples
 - fist (%esp)
 - fistp (%esp)

Arithmetic - Add

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The faddp Add Instruction

faddp

• Adds st(0) to st(1) and stores the result in st(1).

```
st(1) \leftarrow st(1) + st(0)
```

- Pops the FPU stack, thereby removing st (0) and bringing st (1) to the top of the stack (st (0)).
- There are several other versions of fadd see the manual.

Arithmetic - Multiply

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fmulp Multiply Instruction

fmulp

• Multiplies st(1) by st(0) and stores the result in st(1).

 $st(1) \leftarrow st(1) \times st(0)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Pops the FPU stack.
- There are several other versions of fmul see the manual.

Arithmetic - Subtract

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fsubrp Subtract Instruction

fsubrp

• Subtracts st (0) from st (1) and stores the result in st (1).

 $st(1) \leftarrow st(1) - st(0)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Pops the FPU stack.
- There are several other versions of fsub see the manual.

Arithmetic - Subtract

The x87 Floating-Point Unit

Robb T. Koether

- The x87 FPU Architecture
- The FPU Status Register and Rounding
- The FPU Registers and Stack

The x87 Instruction Set

Assignment

- The Intel manual describes fsubp and fsubrp as follows.
- fsubp
 - st(1) \leftarrow st(1) st(0); Pop stack.
 - Machine code DEE9.
- fsubrp
 - st(1) \leftarrow st(0) st(1); Pop stack.
 - Machine code DEE1.
- However, the gnu assembler will reverse their meanings.

Arithmetic - Divide

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

The fdivrp Divide Instruction

fdivrp

• Divides st(1) by st(0) and stores the result in st(1).

$$st(1) \leftarrow st(1)/st(0)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Pops the FPU stack.
- There are several other versions of fdiv see the manual.

Arithmetic - Divide

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- \bullet The Intel manual describes ${\tt fdivp}$ and fdivr as
- fdivp
 - st(1) \leftarrow st(1)/st(0); Pop stack.
 - Machine code DEF9.
- fdivrp
 - st(1) \leftarrow st(0)/st(1); Pop stack.
 - Machine code DEF1.
- However, the gnu assembler will reverse their meanings.

Arithmetic - Square Root

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- There is a square-root instruction fsqrt.
- If we wanted to, we could create a special square-root operator, say #.
- Then the source code
 - a = #b;

would be interpreted as "assign to ${\tt a}$ the square root of ${\tt b}."$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• No function call would be required.

Transcendental Functions

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

- The same is true of the following transcendental functions.
 - fsin: st(0) $\leftarrow \sin(st(0))$.
 - fcos: st(0) $\leftarrow \cos(\text{st}(0))$.
 - fptan: st(0) \leftarrow 1.0, st(1) \leftarrow tan(st(0)).
 - fpatan: st(0) $\leftarrow \arctan(st(1)/st(0))$.
 - fsincos:

 $st(0) \leftarrow \cos(st(0)), st(1) \leftarrow \sin(st(0)).$

Assignment

The x87 Floating-Point Unit

Robb T. Koether

The x87 FPU Architecture

The FPU Status Register and Rounding

The FPU Registers and Stack

The x87 Instruction Set

Assignment

Homework

• Read about the floating-point operations in the Intel Manual, Vol. 2A, Chapter 3, pages 215 through 338.