FIRST and FOLLOW

Koether

eft Factorin

Table-Driver LL Parsing

The FIRST Function
The FOLLOW

Assignmen

FIRST and FOLLOW

Lecture 8 Section 4.4

Robb T. Koether

Hampden-Sydney College

Mon, Feb 9, 2009

Outline

FIRST and FOLLOW

Koethe

Left Factoring

Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignmen

- Left Factoring
- Table-Driven LL Parsing
 - Nullability
 - The FIRST Function
 - The FOLLOW Function
- 3 Assignment

Left Factoring

FIRST and

Robb T

Left Factoring

Table-Driven

L Parsing

Nullability

The FIRST Function

The FOLLOW

Function

Assignmen

- A problem occurs when two productions for the same nonterminal begin with the same token.
- We cannot decide which production to use.
- This is not necessarily a problem since we could process the part they have in common, then make a decision based on what follows.

Left Factoring

FIRST and FOLLOW

Koether

Left Factoring

Table-Driven

LL Parsing

Nullability

The FIRST Function

The FOLLOW

Function

Assignmen

Consider the grammar

$$A \rightarrow \alpha\beta \mid \alpha\gamma$$

We use left factorization to transform it into the form

$$\begin{array}{ccc} A & \to & \alpha A' \\ A' & \to & \beta \mid \gamma. \end{array}$$

 Now we can apply the productions immediately and unambiguously.

FIRST and FOLLOW

Robb T Koethe

Left Factoring

Table-Driven

L Parsing

Nullability

The FIRST Function

The FOLLOW

Function

Assianmen

Example (Left Factoring)

• In the earlier example, we had the productions

$$C \rightarrow id == num \mid id != num \mid id < num$$

• To perform left factoring, introduce a nonterminal *C'*:

$$C \rightarrow \text{id } C'$$
 $C' \rightarrow \text{== num} \mid ! = \text{num} \mid < \text{num}$

FIRST and FOLLOW

Robb I. Koether

Left Factoring

Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignmen

Example (Left Factoring)

Consider the grammar of if statements.

$$S \rightarrow \text{ if } C \text{ then } S \text{ else } S$$

 $| \text{ if } C \text{ then } S$

We rewrite it as

$$S \rightarrow \text{if } C \text{ then } SS'$$

 $S' \rightarrow \text{else } S \mid \varepsilon$

Table-Driven LL Parsing

FIRST and FOLLOW

Robb T

Left Factorin

Table-Driven LL Parsing

The FIRST Function

Assignmen

- To build the parsing table, we need three concepts:
 - Nullability
 - The FIRST function
 - The FOLLOW function

Nullability

FIRST and FOLLOW

Koethe

eft Factorin

Table-Driver LL Parsing Nullability

Nullability
The FIRST Fund

The FIRST Funct
The FOLLOW
Function

Assignmen

Definition (Nullable)

A nonterminal A is nullable if

$$A \Rightarrow^* \varepsilon$$
.

Nullability

FIRST and FOLLOW

Koether

Left Factorin

LL Parsing
Nullability
The FIRST Function
The FOLLOW

Assianmen

• Clearly, A is nullable if it has a production

$$A \rightarrow \varepsilon$$

 But A is also nullable if there are, for example, productions

$$\begin{array}{ccc} A & \rightarrow & BC \\ B & \rightarrow & A \mid aC \mid \varepsilon \\ C & \rightarrow & aB \mid Cb \mid \varepsilon \end{array}$$

Nullability

FIRST and FOLLOW

Robb T Koethe

Left Factoring

LL Parsing
Nullability
The FIRST Functi

Assianmen

• In other words, A is nullable if there is a production

$$A \rightarrow \varepsilon$$
,

or there is a production

$$A \rightarrow B_1B_2...B_n$$

where B_1, B_2, \ldots, B_n are nullable.

FIRST and FOLLOW

Robb T. Koether

Left Factoring

Table-Driver

L Parsing

Nullability

The FIRST Funct

The FIRST Functi

Assignmen

Example (Nullability)

In the grammar

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + T \, E' \mid \varepsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & \star F \, T' \mid \varepsilon \\ F & \rightarrow & (E) \mid \mathbf{id} \mid \mathbf{num} \end{array}$$

- \bullet E' and T' are nullable.
- *E*, *T*, and *F* are not nullable.

FIRST and FOLLOW

Robb 1 Koethe

ft Factorin

Table-Drive LL Parsing Nullability

Nullability
The FIRST Fun

The FOLLOW

Assignmen

Example (Nullability)

Nonterminal	Nullable	
E	No	
E'	Yes	
T	No	
T'	Yes	
F	No	

FIRST and FOLLOW

FIRST and FOLLOW

Koethe

Left Factorin

Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignmen

Definition (FIRST)

FIRST(α) is the set of all terminals that may appear as the first symbol in a replacement string of α .

Definition (FOLLOW)

FOLLOW(α) is the set of all terminals that may follow α in a derivation.

Given a grammar G, we may define the functions
 FIRST and FOLLOW on the strings of symbols of G.

FIRST

FIRST and FOLLOW

Koethe

Left Factorin

LL Parsing
Nullability
The FIRST Function
The FOLLOW

Assignmen

 For a grammar symbol X, FIRST(X) is computed as follows.

- For every terminal X, FIRST $(X) = \{X\}$.
- For every nonterminal X, if

$$X \rightarrow Y_1 Y_2 \dots Y_n$$

is a production, then

- $FIRST(Y_1) \subseteq FIRST(X)$.
- Furthermore, if Y_1, Y_2, \ldots, Y_k are nullable, then

$$\mathsf{FIRST}(Y_{k+1}) \subseteq \mathsf{FIRST}(X).$$

FIRST

FIRST and FOLLOW

Koethe

Left Factorin

Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignmen

- We are concerned with FIRST(X) only for the nonterminals of the grammar.
- FIRST(X) for terminals is trivial.
- According to the definition, to determine FIRST(A), we must inspect all productions that have A on the left.

FIRST and FOLLOW

Koethe

Left Factorin

Table-Driver

The FIRST Function

The FOLLOW Function

Assignmen

Example (FIRST)

• Let the grammar be

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + T \, E' \mid \varepsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & \star F \, T' \mid \varepsilon \\ F & \rightarrow & (E) \mid \mathbf{id} \mid \mathbf{num} \end{array}$$

FIRST and FOLLOW

Robb T Koethe

Left Factoring

Table-Driver LL Parsing Nullability

The FIRST Function
The FOLLOW

Assignmen

- Find FIRST(E).
 - E occurs on the left in only one production

$$E \rightarrow T E'$$

- Therefore, $FIRST(T) \subset FIRST(E)$.
- Furthermore, T is not nullable.
- Therefore, FIRST(E) = FIRST(T).
- We have yet to determine FIRST(T).

FIRST and FOLLOW

Robb T. Koether

Left Factoring

Table-Driven LL Parsing Nullability The FIRST Functi

The FIRST Function
The FOLLOW
Function

Assignmen

Example (FIRST)

- Find FIRST(*T*).
 - T occurs on the left in only one production

$$T \rightarrow F T'$$

• Therefore,

$$FIRST(F) \subseteq FIRST(T)$$
.

- Furthermore, F is not nullable.
- Therefore,

$$FIRST(T) = FIRST(F)$$
.

• We have yet to determine FIRST(F).

FIRST and **FOLLOW**

The FIRST Function

- Find FIRST(F).
 - $FIRST(F) = \{ (, id, num) \}.$
- Therefore,
 - $FIRST(E) = \{ (, id, num) \}.$
 - $FIRST(T) = \{ (, id, num) \}.$

FIRST and **FOLLOW**

The FIRST Function

- Find FIRST(E').
 - $FIRST(E') = \{+\}.$
- Find FIRST(*T'*).
 - $FIRST(T') = \{ \star \}.$

FIRST and FOLLOW

Robb Koethe

Left Factorin

Table-Driver LL Parsing Nullability

The FIRST Function
The FOLLOW
Function

Assignmen

Nonterminal	Nullable	FIRST
E	No	{ (, id, num}
E'	Yes	{+}
T	No	{ (, id, num}
T'	Yes	{*}
F	No	{ (, id, num}

FOLLOW

FIRST and FOLLOW

Robb T. Koether

Left Factorin

Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignmen

- For a grammar symbol X, FOLLOW(X) is defined as follows.
 - If *S* is the start symbol, then $\$ \in \mathsf{FOLLOW}(S)$.
 - If $A \to \alpha B \beta$ is a production, then

$$\mathsf{FIRST}(\beta) \subseteq \mathsf{FOLLOW}(B).$$

• If $A \to \alpha B$ is a production, or $A \to \alpha B \beta$ is a production and β is nullable, then

$$FOLLOW(A) \subseteq FOLLOW(B)$$
.

FOLLOW

FIRST and FOLLOW

Koethe

Left Factorin

Table-Driven

LL Parsing

Nullability

The FIRST Function

The FOLLOW

Function

Assignmen

- We are concerned about FOLLOW(X) only for the nonterminals of the grammar.
- According to the definition, to determine FOLLOW(A), we must inspect all productions that have A on the right.

FIRST and FOLLOW

Robb T. Koether

Left Factoring

Nullability
The FIRST Functio
The FOLLOW
Function

Assignmen

Example (FOLLOW)

Let the grammar be

$$\begin{array}{cccc} E & \rightarrow & T \ E' \\ E' & \rightarrow & + T \ E' \ | \ \varepsilon \\ T & \rightarrow & F \ T' \\ T' & \rightarrow & \star F \ T' \ | \ \varepsilon \\ F & \rightarrow & (E) \ | \ \mathbf{id} \ | \ \mathbf{num} \end{array}$$

FIRST and FOLLOW

Koether

Left Factorin

Table-Driven
LL Parsing
Nullability
The FIRST Functio
The FOLLOW
Function

Assignmen

Example (FOLLOW)

- Find FOLLOW(*E*).
 - E is the start symbol, therefore

$$\$ \in \mathsf{FOLLOW}(E)$$
.

• *E* occurs on the right in only one production.

$$F \rightarrow (E)$$

Therefore

$$\mathsf{FOLLOW}(E) = \{\$, \}$$
.

FIRST and FOLLOW

Koethe

Left Factorin

Table-Driveri
LL Parsing
Nullability
The FIRST Function
Function

Example (FOLLOW)

- Find FOLLOW(E').
 - E' occurs on the right in two productions.

$$\begin{array}{ccc} E & \rightarrow & T E' \\ E' & \rightarrow & + T E' \end{array}$$

• Therefore,

$$FOLLOW(E') = FOLLOW(E) = \{\$, \}.$$

FIRST and FOLLOW

Koether

Left Factoring

Table-Driven

LL Parsing

Nullability

The FIRST Functio

The FOLLOW

Function

Assignmen

Example (FOLLOW)

- Find FOLLOW(T).
 - T occurs on the right in two productions.

$$E \rightarrow TE'$$

$$E' \rightarrow TE'$$

- Therefore, $FOLLOW(T) \supseteq FIRST(E') = \{+\}.$
- However, E' is nullable, therefore it also contains $FOLLOW(E) = \{\$, \}$ and $FOLLOW(E') = \{\$, \}$.
- Therefore,

$$FOLLOW(T) = \{+, \$, \}$$

FIRST and FOLLOW

Koethe

Left Factoring

LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignment

Example (FOLLOW)

- Find FOLLOW(T').
 - T' occurs on the right in two productions.

$$\begin{array}{ccc} T & \rightarrow & F \ T' \\ T' & \rightarrow & \star F \ T' \end{array}$$

• Therefore,

$$\mathsf{FOLLOW}(T') = \mathsf{FOLLOW}(T) = \{\$, \}, +\}.$$

FIRST and FOLLOW

Robb T. Koether

Left Factoring

Table-Driven
LL Parsing
Nullability
The FIRST Functio
The FOLLOW
Function

Assignmen

Example (FOLLOW)

- Find FOLLOW(F).
 - *F* occurs on the right in two productions.

$$\begin{array}{ccc} T & \rightarrow & F \ T' \\ T' & \rightarrow & \star F \ T'. \end{array}$$

Therefore,

$$FOLLOW(F) \supseteq FIRST(T') = \{ \star \}.$$

- However, T' is nullable, therefore it also contains $FOLLOW(T) = \{+, \$, \}$ and $FOLLOW(T') = \{\$, \}, +\}$.
- Therefore,

$$FOLLOW(F) = \{ \star, \$,), + \}.$$

FIRST and FOLLOW

Robb Koethe

Left Factorin

Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function

Assignmen

Example (FOLLOW)

Nonterminal	Nullable	FIRST	FOLLOW
E	No	$\{(, id, num)\}$	{\$,)}
E'	Yes	{+}	{\$,)}
T	No	{ (, id, num}	{\$,),+}
T'	Yes	{*}	{\$,),+}
F	No	{ (, id, num}	{*,\$,),+}

Assignment

FIRST and FOLLOW

Koethe

Left Factoring

Table-Driven

LL Parsing

Nullability

The FIRST Function

The FOLLOW

Function

Assignment

Homework

The grammar

$$R \quad \rightarrow \quad R \cup R \mid RR \mid R^{\star} \mid \ (R) \ \mid \mathbf{a} \mid \mathbf{b}$$

generates all regular expressions on the alphabet $\Sigma = \{a, b\}.$

 Using the result of the exercise from the previous lecture, find FIRST(X) and FOLLOW(X) for each nonterminal X in the grammar.