FIRST and FOLLOW Lecture 8 Section 4.4

Robb T. Koether

Hampden-Sydney College
Mon, Feb 9, 2009

Outline

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The follow
Function
Assignment
(1) Left Factoring
(2) Table-Driven LL Parsing

- Nullability
- The FIRST Function
- The FOLLOW Function
(3) Assignment

Left Factoring

- A problem occurs when two productions for the same nonterminal begin with the same token.
- We cannot decide which production to use.
- This is not necessarily a problem since we could process the part they have in common, then make a decision based on what follows.

Left Factoring

- Consider the grammar

$$
A \rightarrow \alpha \beta \mid \alpha \gamma
$$

- We use left factorization to transform it into the form

$$
\begin{aligned}
A & \rightarrow \alpha A^{\prime} \\
A^{\prime} & \rightarrow \beta \mid \gamma .
\end{aligned}
$$

- Now we can apply the productions immediately and unambiguously.

Example

Example (Left Factoring)

- In the earlier example, we had the productions

$$
C \rightarrow \text { id }==\text { num } \mid \text { id }!=\text { num } \mid \text { id }<\text { num }
$$

- To perform left factoring, introduce a nonterminal C^{\prime} :

$$
\begin{aligned}
C & \rightarrow \text { id } C^{\prime} \\
C^{\prime} & \rightarrow==\text { num } \mid!=\text { num } \mid<\text { num }
\end{aligned}
$$

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The Firist Function
The Follow Function

Assignment

Example (Left Factoring)

- Consider the grammar of if statements.

$$
\begin{aligned}
S \rightarrow & \text { if } C \text { then } S \text { else } S \\
& \mid \text { if } C \text { then } S
\end{aligned}
$$

- We rewrite it as

$$
\begin{aligned}
S & \rightarrow \text { if } C \text { then } S S^{\prime} \\
S^{\prime} & \rightarrow \text { else } S \mid \varepsilon
\end{aligned}
$$

Table-Driven LL Parsing

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nulabilit
The FIRST Function
The Follow Function

Assignment

- To build the parsing table, we need three concepts:
- Nullability
- The FIRST function
- The FOLLOW function

Nullability

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The Follow
Function
Assignment

Definition (Nullable)
A nonterminal A is nullable if

$$
A \Rightarrow^{*} \varepsilon
$$

Nullability

- Clearly, A is nullable if it has a production

$$
A \rightarrow \varepsilon
$$

- But A is also nullable if there are, for example, productions

$$
\begin{aligned}
A & \rightarrow B C \\
B & \rightarrow A|a C| \varepsilon \\
C & \rightarrow a B|C b| \varepsilon
\end{aligned}
$$

Nullability

- In other words, A is nullable if there is a production

$$
A \rightarrow \varepsilon,
$$

or there is a production

$$
A \rightarrow B_{1} B_{2} \ldots B_{n},
$$

where $B_{1}, B_{2}, \ldots, B_{n}$ are nullable.

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The Follow
Function
Assignment

Example (Nullability)

- In the grammar

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \varepsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow \star F T^{\prime} \mid \varepsilon \\
F & \rightarrow(E) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- E^{\prime} and T^{\prime} are nullable.
- E, T, and F are not nullable.

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The Follow
Function
Assignment

Example (Nullability)

Nonterminal	Nullable
E	No
E^{\prime}	Yes
T	No
T^{\prime}	Yes
F	No

FIRST and FOLLOW

Definition (FIRST)

FIRST (α) is the set of all terminals that may appear as the first symbol in a replacement string of α.

Definition (FOLLOW)

FOLLOW (α) is the set of all terminals that may follow α in a derivation.

- Given a grammar G, we may define the functions FIRST and FOLLOW on the strings of symbols of G.

FIRST

- For a grammar symbol $X, \operatorname{FIRST}(X)$ is computed as follows.
- For every terminal $X, \operatorname{FIRST}(X)=\{X\}$.
- For every nonterminal X, if

$$
X \rightarrow Y_{1} Y_{2} \ldots Y_{n}
$$

is a production, then

- $\operatorname{FIRST}\left(Y_{1}\right) \subseteq \operatorname{FIRST}(X)$.
- Furthermore, if $Y_{1}, Y_{2}, \ldots, Y_{k}$ are nullable, then
$\operatorname{FIRST}\left(Y_{k+1}\right) \subseteq \operatorname{FIRST}(X)$.

FIRST

- We are concerned with $\operatorname{FIRST}(X)$ only for the nonterminals of the grammar.
- $\operatorname{FIRST}(X)$ for terminals is trivial.
- According to the definition, to determine $\operatorname{FIRST}(A)$, we must inspect all productions that have A on the left.

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing

The FIRST Function
The FOLLOW
Function
Assignment

Example (FIRST)

- Let the grammar be

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \varepsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow \star F T^{\prime} \mid \varepsilon \\
F & \rightarrow(E) \mid \text { id } \mid \text { num }
\end{aligned}
$$

Example

Example (FIRST)

- Find $\operatorname{FIRST}(E)$.
- E occurs on the left in only one production

$$
E \rightarrow T E^{\prime}
$$

- Therefore, $\operatorname{FIRST}(T) \subseteq \operatorname{FIRST}(E)$.
- Furthermore, T is not nullable.
- Therefore, $\operatorname{FIRST}(E)=\operatorname{FIRST}(T)$.
- We have yet to determine $\operatorname{FIRST}(T)$.

Example

Example (FIRST)

- Find $\operatorname{FIRST}(T)$.
- T occurs on the left in only one production

$$
T \rightarrow F T^{\prime}
$$

- Therefore,

$$
\operatorname{FIRST}(F) \subseteq \operatorname{FIRST}(T)
$$

- Furthermore, F is not nullable.
- Therefore,
$\operatorname{FIRST}(T)=\operatorname{FIRST}(F)$.
- We have yet to determine FIRST (F).

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing

The FIRST Function
The FOLLOW Function

Assignment

Example (FIRST)

- Find $\operatorname{FIRST}(F)$.
- $\operatorname{FIRST}(F)=\{($, id, num $\}$.
- Therefore,
- $\operatorname{FIRST}(E)=\{($, id, num $\}$.
- $\operatorname{FIRST}(T)=\{($, id, num $\}$.

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing

The FIRST Function
The FOLLOW.
Function
Assignment

Example (FIRST)

- Find $\operatorname{FIRST}\left(E^{\prime}\right)$.
- $\operatorname{FIRST}\left(E^{\prime}\right)=\{+\}$.
- Find $\operatorname{FIRST}\left(T^{\prime}\right)$.
- $\operatorname{FIRST}\left(T^{\prime}\right)=\{*\}$.

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing

The FIRST Function
The FOLLOW Function

Assignment

Example (FIRST)

Nonterminal	Nullable	FIRST
E	No	$\{($, id, num $\}$
E^{\prime}	Yes	$\{+\}$
T	No	$\{($, id, num $\}$
T^{\prime}	Yes	$\{*\}$
F	No	$\{($, id, num $\}$

FOLLOW

- For a grammar symbol $X, \operatorname{FOLLOW}(X)$ is defined as follows.
- If S is the start symbol, then $\$ \in \operatorname{FOLLOW}(S)$.
- If $A \rightarrow \alpha \boldsymbol{B} \beta$ is a production, then

$$
\operatorname{FIRST}(\beta) \subseteq \operatorname{FOLLOW}(B)
$$

- If $A \rightarrow \alpha B$ is a production, or $A \rightarrow \alpha B \beta$ is a production and β is nullable, then

$$
\operatorname{FOLLOW}(A) \subseteq \operatorname{FOLLOW}(B)
$$

FOLLOW

- We are concerned about FOLLOW (X) only for the nonterminals of the grammar.
- According to the definition, to determine $\operatorname{FOLLOW}(A)$, we must inspect all productions that have A on the right.

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function
Assignment

Example (FOLLOW)

- Let the grammar be

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \varepsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow \star F T^{\prime} \mid \varepsilon \\
F & \rightarrow(E) \mid \text { id } \mid \text { num }
\end{aligned}
$$

Example

Left Factoring
Table-Driven
LL Parsing
Nullability

Example (FOLLOW)

- Find FOLLOW (E).
- E is the start symbol, therefore

$$
\$ \in \operatorname{FOLLOW}(E) .
$$

- E occurs on the right in only one production.

$$
F \quad \rightarrow \quad(E)
$$

- Therefore

$$
\operatorname{FOLLOW}(E)=\{\$,)\} .
$$

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function
Assignment

Example (FOLLOW)

- Find FOLLOW (E^{\prime}).
- E^{\prime} occurs on the right in two productions.

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime}
\end{aligned}
$$

- Therefore,

$$
\left.\operatorname{FOLLOW}\left(E^{\prime}\right)=\operatorname{FOLLOW}(E)=\{\$,)\right\}
$$

Example

Example (FOLLOW)

- Find FOLLOW (T).
- T occurs on the right in two productions.

$$
\begin{array}{rll}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow & +T E^{\prime}
\end{array}
$$

- Therefore, $\operatorname{FOLLOW}(T) \supseteq \operatorname{FIRST}\left(E^{\prime}\right)=\{+\}$.
- However, E^{\prime} is nullable, therefore it also contains $\operatorname{FOLLOW}(E)=\{\$)$,$\left.\} and \operatorname{FOLLOW}\left(E^{\prime}\right)=\{\$),\right\}$.
- Therefore,

$$
\operatorname{FOLLOW}(T)=\{+, \$,)\} .
$$

Example

FIRST and FOLLOW

Robb T.
Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW Function

Assignment

Example (FOLLOW)

- Find FOLLOW $\left(T^{\prime}\right)$.
- T^{\prime} occurs on the right in two productions.

$$
\begin{aligned}
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow \star F T^{\prime}
\end{aligned}
$$

- Therefore,

$$
\left.\operatorname{FOLLOW}\left(T^{\prime}\right)=\operatorname{FOLLOW}(T)=\{\$,),+\right\} .
$$

Example

Robb T.
Koether

Left Factoring
Table-Driven LL Parsing Nullability The FIRST Function
The FOLLOW Function

Example (FOLLOW)

- Find FOLLOW (F).
- F occurs on the right in two productions.

$$
\begin{aligned}
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow \star F T^{\prime} .
\end{aligned}
$$

- Therefore,

$$
\operatorname{FOLLOW}(F) \supseteq \operatorname{FIRST}\left(T^{\prime}\right)=\{*\} .
$$

- However, T^{\prime} is nullable, therefore it also contains $\operatorname{FOLLOW}(T)=\{+, \$)$,$\left.\} and \operatorname{FOLLOW}\left(T^{\prime}\right)=\{\$),+,\right\}$.
- Therefore,

$$
\operatorname{FOLLOW}(F)=\{\star, \$,),+\} .
$$

Example

FIRST and FOLLOW

Robb T. Koether

Left Factoring
Table-Driven
LL Parsing
Nullability
The FIRST Function
The FOLLOW
Function
Assignment

Example (FOLLOW)

Nonterminal	Nullable	FIRST	FOLLOW
E	No	$\{($, id, num $\}$	$\{\$)\}$,
E^{\prime}	Yes	$\{+\}$	$\{\$)\}$,
T	No	$\{($, id, num $\}$	$\{\$),+\}$,
T^{\prime}	Yes	$\{\star\}$	$\{\$),+\}$,
F	No	$\{($, id, num $\}$	$\{*, \$),+\}$,

Assignment

Homework

- The grammar

$$
R \quad \rightarrow \quad R \cup R|R R| R^{\star}|(R)| \mathbf{a} \mid \mathbf{b}
$$

generates all regular expressions on the alphabet $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.

- Using the result of the exercise from the previous lecture, find $\operatorname{FIRST}(X)$ and $\operatorname{FOLLOW}(X)$ for each nonterminal X in the grammar.

