Functional Dependencies and Normal Forms Lecture 9 Sections 15.1 - 15.4

Robb T. Koether

Hampden-Sydney College

Mon, Feb 4, 2013

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

★ ∃ > < ∃ >

- 2 First Normal Form
- 3 Functional Dependencies
- Second Normal Form
- 5 Assignment

< AL

H 5

1 Normal Forms

- 2 First Normal Form
- 3 Functional Dependencies
- 4 Second Normal Form
- 5 Assignment

- A normal form is a standard form.
- The standard forms are generally easier to work with and they are more efficient.
- Nonstandard forms can be inefficient (time or space) and can be error prone.

- There are several levels of normal form for databases, each one built on the preceding level.
 - First Normal Form.
 - Second Normal Form.
 - Third Normal Form.
 - Boyce-Codd Normal Form.
 - Fourth Normal Form.
 - Fifth Normal Form.

A E > 4

Normal Forms

2 First Normal Form

3 Functional Dependencies

4 Second Normal Form

5 Assignment

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

Definition (First Normal Form)

A relation is in first normal form (1NF) if the value of every attribute for every tuple is a single value (atomic).

• This rules out lists of values or sets of values.

First Normal Form

order_no	cat_no	dept	sales_person	quant	cust_no	cust_name
222-1	1234	hardware	John Wilson	2	3333	Joe Smith
	3456			2		
444-2	4567	lumber	Tim Gramm	2	4444	Sue Taylor
555-1	5678	garden	David Simon	3	3333	Joe Smith
	6789			1		
777-2	4567	lumber	Tim Gramm	2	7777	Bob Sponge
888-3	1234	hardware	Ben Sherman	1	4444	Sue Taylor

• In the orders table, one order may include multiple items.

• Nevertheless, we make a separate tuple for each item.

< ∃ ►

Example – 1NF Normalized Table

order_no	cat_no	dept	sales_person	quant	cust_no	cust_name
222-1	1234	hardware	John Wilson	2	3333	Joe Smith
222-1	3456	hardware	John Wilson	2	3333	Joe Smith
444-2	4567	lumber	Tim Gramm	2	4444	Sue Taylor
555-1	5678	garden	David Simon	3	3333	Joe Smith
555-1	6789	garden	David Simon	1	3333	Joe Smith
777-2	4567	lumber	Tim Gramm	2	7777	Bob Sponge
888-3	1234	hardware	Ben Sherman	1	4444	Sue Taylor

• To 1NF-normalize the table, make a separate tuple for each value.

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

Normal Forms

2 First Normal Form

- Functional Dependencies
 - 4 Second Normal Form

5 Assignment

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

∃ ► < ∃ ►</p>

Definition (Functional Dependency)

For any tuple *t* and for any set of attributes *A*, let t[A] represent the values of *t* on the attributes in *A*. Let *X* and *Y* be two sets of attributes. Then *Y* is functionally dependent on *X*, denoted $X \rightarrow Y$, if

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y].$$

The relation $X \rightarrow Y$ is a functional dependency.

• This means that if two tuples have the same values for the attributes in *X*, then they must also have the same values for the attributes in *Y*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Mon, Feb 4, 2013

11/24

• Consider a relation emp_proj_works with the attributes

- ssn Social Security number
- lname Last name
- proj Project number
- p_name Project name
- dept Department of the project
- hours Number of hours employee worked on project.
- Using the semantics of the situation, list all functional dependencies.

A B F A B F

• The following are a few functional dependencies.

• List all functional dependencies in the earlier example.

イロト イポト イヨト イヨト

Definition (Superkey)

Let *A* be the set of all attributes in a relation *R*. Then a set $S \subseteq A$ is a superkey of *R* if $S \rightarrow A$.

Definition (Candidate Key, Key)

A collection of attributes K is a candidate key of a relation R if K is a superkey of R, but no proper subset of K is a superkey of R. A candidate key is also called a key.

Definition (Primary Key)

A primary key of a relation is an arbitrarily selected candidate key.

イロト イポト イヨト イヨト

Mon, Feb 4, 2013

14/24

- A key is a "minimal" superkey in the sense that if we remove any attribute from it, then it is no longer a superkey.
- What are the superkeys of the earlier example?
- What are the candidate keys?
- What is the primary key? (our choice)

Definition (Prime Attribute)

A prime attribute of a relation *R* is an attribute that is a member of some key of *R*. All other attributes are non-prime.

- List the prime attributes in the previous example.
- List the non-prime attributes in the previous example.

Normal Forms

- 2 First Normal Form
- 3 Functional Dependencies
- Second Normal Form

5 Assignment

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

Definition (Full Functional Dependency)

A functional dependency $X \rightarrow Y$ is full if removal of any of the attributes from X renders it no longer a functional dependency. Otherwise, the functional dependency is partial.

- A full functional dependency is minimal for the set *Y* as a whole, but it may not be minimal for each attribute in *Y*.
- This is similar to the definition of a key, but applied only to the set *Y*.
- If the primary key is a single attribute, then there can be no partial dependencies.

Definition (Second Normal Form)

A relation is in second normal form (2NF) if every nonprime attribute *A* is fully functionally dependent on the primary key.

• The idea is to avoid any subsets of the primary key that could serve as a primary key for some of the nonprime attributes.

Mon, Feb 4, 2013

19/24

Example

order_no	cat_no	dept	sales_person	quant	cust_no	cust_name
222-1	1234	hardware	John Wilson	2	3333	Joe Smith
222-1	3456	hardware	John Wilson	2	3333	Joe Smith
444-2	4567	lumber	Tim Gramm	2	4444	Sue Taylor
555-1	5678	garden	David Simon	3	3333	Joe Smith
555-1	6789	garden	David Simon	1	3333	Joe Smith
777-2	4567	lumber	Tim Gramm	2	7777	Bob Sponge
888-3	1234	hardware	Ben Sherman	1	4444	Sue Taylor

• Show that the relation is not in 2NF.

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

æ

590

イロト イヨト イヨト イヨト

• To put a relation into 2NF, move the nonprime keys that are not fully functionally dependent on the primary key to a separate table along with that part of the primary key on which they are fully functionally dependent.

Example – 2NF Normalized Tables

Example – 2NF Normalized Tables

• The three tables above are in 2NF.

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

Mon, Feb 4, 2013 22 / 24

DQC

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Normal Forms

- 2 First Normal Form
- 3 Functional Dependencies
- Second Normal Form

Assignment

• Read Sections 15.1 - 15.4.

Robb T. Koether (Hampden-Sydney College) Functional Dependencies and Normal Forms

590

イロト イポト イヨト イヨト