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The Stages of Compilation

The stages of compilation
Lexical analysis
Syntactic analysis.
Semantic analysis.
Intermediate code generation.
Optimization.
Machine code generation.
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Lexical Analysis

Definition (Token)
A token is a smallest meaningful group symbols.

Definition (Lexical analyzer)
A lexical analyzer, also called a lexer or a scanner, receives a stream
of characters from the source program and groups them into tokens.
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Example

Example (Lexical Analysis)
What are the tokens in the following program?

int main()
{

float a = 123.4;
return 0;

}
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Tokens

Each token has a type and a value.
For example,

The variable count has type id and value “count”.
The number 123 has type num and value “123”.
The keyword int has type int and value “int”.
The symbol { has the type lbrace and value “lbrace”.
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Example

Example (Lexical Analysis)
The statement

position = initial + rate * 60;

would be viewed as

id1 = id2 + id3 ∗ num ;

or
id1 assign id2 plus id3 times num semi

by the lexer.
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Lexical Analysis Tools

There are tools available to assist in the writing of lexical
analyzers.

lex - produces C source code (UNIX).
flex - produces C source code (gnu).
JLex - produces Java source code.
JFlex - produces Java source code.

We will use JFlex.
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Syntactic Analysis

Definition (Syntax analyzer)
A syntax analyzer, also called a parser, receives a stream of tokens
from the lexer and groups them into phrases that match specified
grammatical patterns.
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Syntactic Analysis

Definition (Abstract syntax tree)
The output of the parser is an abstract syntax tree representing the
syntactical structure of the tokens.
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Grammatical Patterns

Grammatical patterns are described by a context-free grammar.
For example, an assignment statement may be defined as

stmt → id = expr ;

expr → expr + expr | expr ∗ expr | id | num
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Example

Example (Syntactic Analysis)
The form

id1 = id2 + id3 ∗ num ;

may be represented by the following syntax tree.

=

*

+

id3

id2

num

id1
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Syntax Analysis Tools

There are tools available to assist in the writing of parsers.
yacc - produces C source code (UNIX).
bison - produces C source code (gnu).
CUP - produces Java source code.

We will use CUP.
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Semantic Analysis

Definition (Semantic analyzer)
A semantic analyzer traverses the abstract syntax tree, checking that
each node is appropriate for its context, i.e., it checks for semantic
errors. It outputs a refined abstract syntax tree.
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Example: Semantic Analysis

Example (Semantic Analysis)
The previous tree may be refined to

=

*

+

id3

id2

inttoreal

id1

num
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Intermediate Code Generation

Definition (Intermediate code)
Intermediate code is code that represents the semantics of a program,
but is machine-independent.

Definition (Intermediate code generator)
An intermediate code generator receives the abstract syntax tree and
outputs intermediate code that semantically corresponds to the
abstract syntax tree.
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Intermediate Code

This stage marks the boundary between the front end and the
back end.
The front end is language-specific and machine-independent.
The back end is machine-specific and language-independent.
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Example

Example (Intermediate Code Generation)
The tree in our example may be expressed in intermediate code
as

temp1 = inttoreal(60)
temp2 = id3 * temp1
temp3 = id2 + temp2
id1 = temp3
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Code Optimizer

Definition (Optimizer)
An optimizer reviews the code, looking for ways to reduce the number
of operations and the memory requirements.

A program may be optimized for speed or for size.
Typically there is a trade-off between speed and size.
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Example

Example (Optimization)
The intermediate code in this example may be optimized as

temp1 = id3 * 60.0
id1 = id2 + temp1
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Machine Code Generation

The code generator receives the (optimized) intermediate code.
It produces either

Machine code for a specific machine, or
Assembly code for a specific machine and assembler.

If it produces assembly code, then an assembler is used to
produce the machine code.
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Example: Machine Code Generation

The intermediate code may be translated into the assembly code

movf id3,R2
mulf #60.0,R2
movf id2,R1
addf R2,R1
movf R1,id1
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Assignment

Assignment
Read Chapters 1 and 2.
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