
Introduction to Compiler Design
Lecture 1

Chapters 1 and 2

Robb T. Koether

Hampden-Sydney College

Wed, Jan 14, 2015

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 1 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 2 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 3 / 33

The Stages of Compilation

The stages of compilation
Lexical analysis
Syntactic analysis.
Semantic analysis.
Intermediate code generation.
Optimization.
Machine code generation.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 4 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 5 / 33

Lexical Analysis

Definition (Token)
A token is a smallest meaningful group symbols.

Definition (Lexical analyzer)
A lexical analyzer, also called a lexer or a scanner, receives a stream
of characters from the source program and groups them into tokens.

Source
Program

Lexical
Analyzer

Stream
of

Tokens

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 6 / 33

Example

Example (Lexical Analysis)
What are the tokens in the following program?

int main()
{

float a = 123.4;
return 0;

}

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 7 / 33

Tokens

Each token has a type and a value.
For example,

The variable count has type id and value “count”.
The number 123 has type num and value “123”.
The keyword int has type int and value “int”.
The symbol { has the type lbrace and value “lbrace”.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 8 / 33

Example

Example (Lexical Analysis)
The statement

position = initial + rate * 60;

would be viewed as

id1 = id2 + id3 ∗ num ;

or
id1 assign id2 plus id3 times num semi

by the lexer.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 9 / 33

Lexical Analysis Tools

There are tools available to assist in the writing of lexical
analyzers.

lex - produces C source code (UNIX).
flex - produces C source code (gnu).
JLex - produces Java source code.
JFlex - produces Java source code.

We will use JFlex.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 10 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 11 / 33

Syntactic Analysis

Definition (Syntax analyzer)
A syntax analyzer, also called a parser, receives a stream of tokens
from the lexer and groups them into phrases that match specified
grammatical patterns.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 12 / 33

Syntactic Analysis

Definition (Abstract syntax tree)
The output of the parser is an abstract syntax tree representing the
syntactical structure of the tokens.

Stream
of

Tokens

Syntax
Analyzer

Abstract
Syntax
Tree

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 13 / 33

Grammatical Patterns

Grammatical patterns are described by a context-free grammar.
For example, an assignment statement may be defined as

stmt → id = expr ;

expr → expr + expr | expr ∗ expr | id | num

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 14 / 33

Example

Example (Syntactic Analysis)
The form

id1 = id2 + id3 ∗ num ;

may be represented by the following syntax tree.

=

*

+

id3

id2

num

id1

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 15 / 33

Syntax Analysis Tools

There are tools available to assist in the writing of parsers.
yacc - produces C source code (UNIX).
bison - produces C source code (gnu).
CUP - produces Java source code.

We will use CUP.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 16 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 17 / 33

Semantic Analysis

Definition (Semantic analyzer)
A semantic analyzer traverses the abstract syntax tree, checking that
each node is appropriate for its context, i.e., it checks for semantic
errors. It outputs a refined abstract syntax tree.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 18 / 33

Example: Semantic Analysis

Example (Semantic Analysis)
The previous tree may be refined to

=

*

+

id3

id2

inttoreal

id1

num

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 19 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 20 / 33

Intermediate Code Generation

Definition (Intermediate code)
Intermediate code is code that represents the semantics of a program,
but is machine-independent.

Definition (Intermediate code generator)
An intermediate code generator receives the abstract syntax tree and
outputs intermediate code that semantically corresponds to the
abstract syntax tree.

Intermediate
Code

Generator

Intermediate
Code

Abstract
Syntax
Tree

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 21 / 33

Intermediate Code

This stage marks the boundary between the front end and the
back end.
The front end is language-specific and machine-independent.
The back end is machine-specific and language-independent.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 22 / 33

Intermediate Code

Intermediate
Code

C
Program

Java
Program

Python
Program

x86
Code

MIPS32
Code

Front End Back End

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 23 / 33

Example

Example (Intermediate Code Generation)
The tree in our example may be expressed in intermediate code
as

temp1 = inttoreal(60)
temp2 = id3 * temp1
temp3 = id2 + temp2
id1 = temp3

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 24 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 25 / 33

Code Optimizer

Definition (Optimizer)
An optimizer reviews the code, looking for ways to reduce the number
of operations and the memory requirements.

A program may be optimized for speed or for size.
Typically there is a trade-off between speed and size.

Optimizer Intermediate
Code

Intermediate
Code

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 26 / 33

Example

Example (Optimization)
The intermediate code in this example may be optimized as

temp1 = id3 * 60.0
id1 = id2 + temp1

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 27 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 28 / 33

Machine Code Generation

The code generator receives the (optimized) intermediate code.
It produces either

Machine code for a specific machine, or
Assembly code for a specific machine and assembler.

If it produces assembly code, then an assembler is used to
produce the machine code.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 29 / 33

Machine Code Generation

Code
Generator

Assembly
Code

Intermediate
Code

Assembler
Machine

Code

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 30 / 33

Example: Machine Code Generation

The intermediate code may be translated into the assembly code

movf id3,R2
mulf #60.0,R2
movf id2,R1
addf R2,R1
movf R1,id1

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 31 / 33

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 32 / 33

Assignment

Assignment
Read Chapters 1 and 2.

Robb T. Koether (Hampden-Sydney College) Introduction to Compiler Design Wed, Jan 14, 2015 33 / 33

	The Stages of Compilation
	Lexical Analysis
	Syntactic Analysis
	Semantic Analysis
	Intermediate Code Generation
	Optimization
	Machine Code Generation

	Assignment

