Specification of Tokens Lecture 2 Section 3.3

Robb T. Koether

Hampden-Sydney College

Fri, Jan 16, 2015

Robb T. Koether (Hampden-Sydney College)

Specification of Tokens

Fri, Jan 16, 2015 1 / 24

э

590

< ロト < 同ト < ヨト < ヨト

- 2 Operations on Languages
- 3 Regular Expressions
- Extensions of Regular Languages
- 5 Assignment

4 A b

Alphabets and Languages

- 2 Operations on Languages
- 3 Regular Expressions
- 4 Extensions of Regular Languages

5 Assignment

∃ ► < ∃ ►</p>

Definition (Alphabet)

An alphabet is a finite set of symbols. Traditionally, we denote an alphabet by the letter Σ .

Definition (String)

A string is a finite sequence of symbols.

Definition (Empty String)

The empty string, denoted ε , is the string that contains no symbols. The empty string has length 0.

イロト イポト イヨト イヨト

Example (Alphabets and Strings)

• Examples:

• The traditional alphabet is

$$\Sigma = \{A,B,C,\ldots,Z\}.$$

- The binary alphabet is $\Sigma = \{0, 1\}$.
- For C programs, the alphabet is the set of ASCII characters.

A B F A B F

4 A 1

Definition (Language)

A language is a set of (finite) strings over a given alphabet.

- A language can be (and usually is) infinite.
- The set of all even integers over the alphabet $\Sigma = \{0, 1, \dots, 9\}$ is a language.
- The set of all C programs is a language.

イロト 不得 トイヨト イヨト 二日

- 3 Regular Expressions
- 4 Extensions of Regular Languages

5 Assignment

Sac

< ロト < 同ト < ヨト < ヨト

Definition (Language)

- Let L, L_1 , and L_2 be languages.
 - Union:

$$L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}.$$

Concatenation:

$$L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}.$$

• Repeated concatenation:

$$L^n = LLL \cdots L$$
 n copies of *L*.

Kleene closure:

$$L^* = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cdots$$

Robb T. Koether (Hampden-Sydney College)

э

Sac

イロト イロト イヨト イヨト

Example (Language)

Let

$$L_1 = \{1,3,5,7,9\}$$

and

 $L_2=\{0,2,4,6,8\}.$

- Describe $L_1 \cup L_2$.
- Describe L₁L₂.
- Describe $(L_1 \cup L_2)^3$.
- Describe $(L_1 \cup L_2)^*L_2$.

э

イロト イポト イヨト イヨト

- 2 Operations on Languages
- 3 Regular Expressions
- 4 Extensions of Regular Languages

5 Assignment

4 3 > 4 3

- A regular expression can be used to describe a language.
- Regular expressions may be defined in two parts.
 - The basic part.
 - The recursive part.

4 ∃ > < ∃ >

- The basic part:
 - ε represents the language $\{\varepsilon\}$.
 - **a** represents the language $\{a\}$ for every $a \in \Sigma$.
 - Call these languages $L(\varepsilon)$ and $L(\mathbf{a})$, respectively.

-

• I > • = • •

- The recursive part: Let *r* and *s* denote regular expressions.
 - $r \mid s$ represents the language $L(r) \cup L(s)$.
 - *rs* represents the language *L*(*r*)*L*(*s*).
 - r^* represents the language $L(r)^*$.
 - (r) represents the language L(r).

4 ∃ > < ∃ >

4 A 1

- In other words
 - $L(r \mid s) = L(r) \cup L(s)$.
 - L(rs) = L(r)L(s).
 - $L(r^*) = L(r)^*$.
 - L((r)) = L(r).

3

イロト イポト イヨト イヨト

Example (Identifiers)

• Identifiers in C++ can be represented by a regular expression.

$$r = A | B | \dots | Z | a | b | \dots | z$$
$$s = 0 | 1 | \dots | 9$$
$$t = r(r | s)^*$$

Robb T. Koether (Hampden-Sydney College)

3

4 ∃ > < ∃ >

Definition (Regular definition)

A regular definition of a regular expression is a "grammar" of the form

$$d_1 \rightarrow r_1$$

 $d_2 \rightarrow r_2$
 \vdots
 $d_n \rightarrow r_n$

where each r_i is a regular expression over $\Sigma \cup \{d_1, d_2, \ldots, d_{i-1}\}$.

Robb T. Koether (Hampden-Sydney College)

э

(B)

Example (Identifiers)

• We may now describe C++ identifiers as follows.

 $\begin{array}{l} \textit{letter} \rightarrow A \mid B \mid \cdots \mid Z \mid a \mid b \mid \cdots \mid z \\ \textit{digit} \rightarrow 0 \mid 1 \mid \cdots \mid 9 \\ \textit{id} \rightarrow \textit{letter} (\textit{letter} \mid \textit{digit})^* \end{array}$

- Note that this definition does not allow recursively defined tokens.
- In other words, d_i cannot be defined in terms of d_i , not even indirectly.

3

∃ ⊳

- 2 Operations on Languages
- 3 Regular Expressions
- Extensions of Regular Languages

5 Assignment

4 3 > 4 3

I > <
I >
I

Definition

We add the following symbols to our regular expressions.

- One or more instances: $r^+ = r r^*$.
- Zero or one instance: $r? = r | \varepsilon$.
- Character class: $[a_1 a_2 \cdots a_n] = a_1 | a_2 | \cdots | a_n$.

E > < E >

Example (Identifiers)

Identifiers can be described as

$$\begin{array}{l} \textit{letter} \rightarrow [A-Za-z] \\ \textit{digit} \rightarrow [0-9] \\ \textit{id} \rightarrow \textit{letter} (\textit{letter} \mid \textit{digit})^{*} \end{array}$$

Robb T. Koether (Hampden-Sydney College)

3

< ロト < 同ト < ヨト < ヨト

Example (Floating-point Numbers)

• Floating-point numbers can be described as

 $digit \rightarrow [0-9]$ $digits \rightarrow digit^+$ $number \rightarrow digits (. digits)? (E [+-]? digits)?$

Robb T. Koether (Hampden-Sydney College)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

- 2 Operations on Languages
- 3 Regular Expressions
- 4 Extensions of Regular Languages

5 Assignment

Sac

4 3 > 4 3

Image: A matrix

Assignment

- Read Section 3.3.
- Exercises 2, 3.

Robb T. Koether (Hampden-Sydney College)

э

590

イロト イポト イヨト イヨト