
The x86 Architecture
Lecture 24

Intel Manual, Vol. 1, Chapter 3

Robb T. Koether

Hampden-Sydney College

Fri, Mar 20, 2015

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 1 / 29



1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 2 / 29



Outline

1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 3 / 29



Overview

See the reference “IA-32 Intel Architecture Software Developer’s
Manual Volume 1: Basic Architecture”, Chapter 3.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 4 / 29

http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/


Outline

1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 5 / 29



Instructions

Each instruction is of the form
[label:] mnemonic [operand1][, operand2][, operand3]

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .
Each operand is either

An immediate value,
A register, or
A memory address.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 6 / 29



Source and Destination Operands

Each operand is either a source operand or a destination operand.
A source operand, in general, may be

An immediate value,
A register, or
A memory address.

A destination operand, in general, may be
A register, or
A memory address.

But only certain combinations are permitted.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 7 / 29



Source and Destination Operands

Each operand is either a source operand or a destination operand.
A source operand, in general, may be

An immediate value,
A register, or
A memory address.

A destination operand, in general, may be
A register, or
A memory address.

But only certain combinations are permitted.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 7 / 29



Source and Destination Operands

The standard interpretation of
mnemonic operand1,operand2

is that operand1 is the destination and operand2 is the source.
operand1 ← operand1 op operand2

The Intel manuals are written according to the standard
interpretation.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 8 / 29



Source and Destination Operands

However, the gnu interpretation of
mnemonic operand1,operand2

is that operand1 is the source and operand2 is the destination.
operand1 op operand2 → operand2

Therefore, we will have to interpret the information in the Intel
manuals accordingly.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 9 / 29



Instructions

Not every logical combination of operands is permitted in every
instruction.
See the references

“IA-32 Intel Architecture Software Developer’s Manual Volume 2A:
Instruction Set Reference, A-M”
“IA-32 Intel Architecture Software Developer’s Manual Volume 2B:
Instruction Set Reference, N-Z”

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 10 / 29

http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/


Instructions

Different instructions require different numbers of operands.
For example,

hlt - 0 operands
inc - 1 operand
add - 2 operands
imul - 1, 2, or 3 operands

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 11 / 29



Address Space

The memory addresses are 32 bits, so they can access up to 4
GB of memory.
A global variable or function is referenced by its name, which is a
label representing its address.
Local variables are referenced by an offset from the base pointer,
which holds the base address of the activation record on the stack.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 12 / 29



Outline

1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 13 / 29



Basic Registers

There are
Eight 32-bit “general-purpose” registers,
One 32-bit EFLAGS register,
One 32-bit instruction pointer register (eip), and
Other special-purpose registers.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 14 / 29



The General-Purpose Registers

The eight 32-bit general-purpose registers are eax, ebx, ecx,
edx, esi, edi, ebp, and esp.
For calculations, we will use eax, ebx, ecx, and edx.
Register esp is the stack pointer.
Register ebp is the base pointer.
Registers esi and edi are source and destination index registers
for array and string operations.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 15 / 29



The General-Purpose Registers

The registers eax, ebx, ecx, and edx may be accessed as 32-bit,
16-bit, or 8-bit registers.
The other four registers can be accessed as 32-bit or 16-bit.
For example,

Register eax represents a 32-bit quantity.
The low-order two bytes of eax may be accessed through the name
ax.
The high-order byte of ax is named ah.
The low-order byte of ax is named al.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 16 / 29



The General-Purpose 32-Bit Registers

eax

esp
edi
esi

ebp
edx
ecx
ebx

31 0

Accumulator

Stack pointer

Array destination

Array source

Base pointer

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 17 / 29



The General-Purpose 16-Bit Registers

ax

sp
di
si
bp
dx
cx
bx

31 0

Accumulator

Stack pointer

Array destination

Array source

Base pointer

16 15

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 18 / 29



The General-Purpose 8-Bit Registers

al

sp
di
si
bp

dl
cl
bl

31 0

Accumulator

Stack pointer

Array destination

Array source

Base pointer

16 15

ah

dh
ch
bh

8 7

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 19 / 29



EFLAGS Register

The various bits of the 32-bit EFLAGS register are set (1) or reset
(0) according to the results of certain operations.
We will be interested in the bits

CF - carry flag
PF - parity flag
ZF - zero flag
SF - sign flag

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 20 / 29



Instruction Pointer

Finally, there is the eip register, which is the instruction pointer.
Register eip holds the address of the next instruction to be
executed.
We should never change the value of eip directly. It will be
updated automatically as necessary.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 21 / 29



Outline

1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 22 / 29



Data Types

There are 5 integer data types.
Byte - 8 bits.
Word - 16 bits.
Doubleword - 32 bits.
Quadword - 64 bits.
Double quadword - 128 bits.

We will use doublewords (for ints) unless we have a specific
need for one of the other types.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 23 / 29



Outline

1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 24 / 29



The Run-time Stack

The run-time stack supports procedure calls and the passing of
parameters between procedures.
The stack is located in memory.
The stack grows towards low memory.

When we push a value, esp is decremented.
When we pop a value, esp is incremented.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 25 / 29



Using the Run-time Stack

Typically, if an operation produces a result, we will push that result
onto the stack.
The next operation, if it expects a previous result, will pop it off the
stack.
The alternative is to use the registers to pass results, but that is
much more complicated since we would have to keep track of
which registers were free.

A good compiler would do that.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 26 / 29



Using the Run-time Stack

Typically, if an operation produces a result, we will push that result
onto the stack.
The next operation, if it expects a previous result, will pop it off the
stack.
The alternative is to use the registers to pass results, but that is
much more complicated since we would have to keep track of
which registers were free.
A good compiler would do that.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 26 / 29



Function Calls and the Base Pointer

When we make a function call, we use the base pointer ebp to
store the location of the top of the stack esp before the function
call.

esp→ ebp

Then we push the parameters and local variables of the function
onto the stack.
When we return from the function, we use the base pointer to
restore the top of the stack to its previous location.

ebp→ esp

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 27 / 29



Outline

1 Overview of the x86 Architecture
Instruction Format
Registers
Data Types
The Run-time Stack

2 Assignment

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 28 / 29



Assignment

Homework
Download the Intel Manual, Vol. 1, and read Chapter 3.

Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015 29 / 29


	Overview of the x86 Architecture
	Instruction Format
	Registers
	Data Types
	The Run-time Stack

	Assignment

