Robb T. Koether

Hampden-Sydney College

Mon, Jan 19, 2015

«40>» «F)>r « > = E vQ

@ A Class of Tokens
© The Input Buffer
e Transition Diagrams
e Writing the Lexer

e Assignment

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 2/21

0 A Class of Tokens
9 The Input Buffer
0 Transition Diagrams
0 Writing the Lexer

Q Assignment

o> «Fr <= <Er E DA

A Class of Tokens

@ We will explore and demonstrate the concepts of a lexer by using
a simple class of tokens.

digit — [0-9]
digits — digit™*
number — digits (. digits)? (E [+-]7? digits)?
letter — [A-Za-z]
id — letter (letter | digit)*
if — if
then — then
else — else
relop — <|>|<=|>=|=]<>

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 4/21

Whitespace

@ In addition to recognizing tokens, the lexer must strip whitespace
from the input.

@ Whitespace is not a token, but it must be recognized by the lexer.

ws — (blank | tab | newline)™

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 5/21

0 A Class of Tokens
e The Input Buffer
0 Transition Diagrams
0 Writing the Lexer

Q Assignment

o> «Fr <= <Er E DA

The Input Buffer

@ The input to the lexer is a stream of characters.

@ We may consider the characters to be residing in a buffer.
@ We mark two positions in the buffer.

o lexemeBegin
o forward

@ The pointer lexemeBegin holds the starting position of the current
token.

@ The pointer forward points to the current symbol.

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 7/21

The Input Buffer

@ The lexer begins in the start state with the current symbol (pointed
to by both lexemeBegin and forward).

@ The process moves from state to state by following the transitions
whose labels match the current symbol (forward).

@ This continues until no further moves are possible.

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 8/21

The Input Buffer

forward

i[n]t]

[clofuln[t] [=

[lo]:]

lexemeBegin

The input buffer

Robb T. Koether (Hampden-Sydney College)

o
o =1 =
Recognition of Tokens

Q>

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln|t]

[clofuln[t] [=

[lo]:]

lexemeBegin

Advance one symbol

Robb T. Koether (Hampden-Sydney College)

o
o =1 =
Recognition of Tokens

Q>

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln]t] [cfofufn]t]

lexemeBegin

[0]:]

Could be an identifier; could be a keyword
Robb T. Koether (Hampden-Sydney College)

Recognition of Tokens

o

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln|t]

[clofuln[t] [=

[lo]:]

lexemeBegin

It is the keyword int

Robb T. Koether (Hampden-Sydney College)

o
o =1 =
Recognition of Tokens

Q>

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln|t]

[clofuln[t] [=

[lo]:]

lexemeBegin

Skip whitespace

Robb T. Koether (Hampden-Sydney College)

o
o =1 =
Recognition of Tokens

Q>

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln|t]

[clofuln]t]

[0]:]

lexemeBegin

Could be an identifier; could be a keyword
Robb T. Koether (Hampden-Sydney College)

Recognition of Tokens

o

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln|t]

[clofuln[t] [=

[lo]:]

lexemeBegin

It is an identifier

Robb T. Koether (Hampden-Sydney College)

o
o =1 =
Recognition of Tokens

Q>

Mon, Jan 19, 2015 9/21

The Input Buffer

forward
Lifn]t]

[clofuln]t]

[lo]:]

lexemeBegin

This is an operator, but which one?
Robb T. Koether (Hampden-Sydney College)

[}
Recognition of Tokens

=

o

Mon, Jan 19, 2015 9/21

The Input Buffer

forward

Liln|t]

[clofuln[t] [=

[[o]:]

lexemeBegin

It is the assignment operator

Robb T. Koether (Hampden-Sydney College)

o
o =1 =
Recognition of Tokens

Mon, Jan 19, 2015 9/21

0 A Class of Tokens
Q The Input Buffer
e Transition Diagrams
0 Writing the Lexer

Q Assignment

«40>» «F)>r «=) « > = Q>

Transition Diagrams

Definition (Transition Diagram)
@ A transition diagram is a directed graph.
@ It consists of a finite set of nodes, called states.
@ One state is designated the start state.
@ The directed edges between states represent transitions.

@ Each transition is labeled with a symbol (or possibly a regular
expression).

@ A subset of the set of states is designated the accepting states.
The remaining states are rejecting states.

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 11/21

Transition Diagrams

@ Consider the relational operators <, >, <=, >=, =, and <>.
@ The first symbol may be <, >, =, or something else.

@ If the first symbol is <, then the next symbol may be =, >, or
something else.

@ If the first symbol is >, then the next symbol may be = or
something else.

@ If the first symbol is =, then the next symbol is something else.

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 12/21

Transition Diagrams

@
other

GT and retract
Robb T. Koether (Hampden-Sydney College)

Recognition of Tokens

v,
Mon, Jan 19, 2015

13/21

Transition Diagrams

letter | digit

other identifier

and retract

Robb T. Koether (Hampden-Sydney College)

Recognition of Tokens

a
Mon, Jan 19, 2015

14/ 21

Transition Diagrams

f other keyword
i and retract
t other keyword
and retract
€ | other keyword
and retract
v,

Robb T. Koether (Hampden-Sydney College)

Recognition of Tokens

nae
15/21

Mon, Jan 19, 2015

@ Draw the transition diagram for numbers

digit — [0-9]
digits — digit™

number — digits (. digits)? (E [+-]? digits)?

0 A Class of Tokens
9 The Input Buffer
0 Transition Diagrams
Q Writing the Lexer

Q Assignment

o> «Fr <= <Er E DA

Writing the Lexer

@ The lexer is the program that implements the transition diagram.
@ We could use

@ A switch statement, and/or
@ An if-else structure.

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 18/21

Writing the Lexer

The Lexer for Relational Operators

Token getRelop ()
{

int state 0;
char ¢ = get_next_symbol () ;
while (c == '<’ || ¢ == "'=" || ¢c == "'>")
{
switch (state)
{
case 0:
if (c == ’<’) state ig
else if (c == ’'=") state = 2;
else if (c == ’">') state 3¢
else fail();
break;
case 8:

retract () ;
return Token (GT) ;

Robb T. Koether (Hampden-Sydney College) Recognition of Tokens Mon, Jan 19, 2015 19/21

0 A Class of Tokens
9 The Input Buffer
0 Transition Diagrams
0 Writing the Lexer

e Assignment

o> «Fr <= <Er E DA

@ Read Section 3.4.

@ Exercises 1, 2(c)(i).

	A Class of Tokens
	The Input Buffer
	Transition Diagrams
	Writing the Lexer
	Assignment

