The Huntington-Hill Method
 Lecture 22
 Section 4.5

Robb T. Koether
Hampden-Sydney College

Fri, Oct 16, 2015
(9) The Huntington-Hill Method

- Method 1
- Method 2
(2) Assignment

Outline

(1) The Huntington-Hill Method
- Method 1
- Method 2

(2) Assignment

The Huntington-Hill Method

- In 1929, Congress set the size of the House of Representatives at 435 members.
- In 1941, Congress adopted the Huntington-Hill method for apportioning the seats in the House.
- Both laws remain in effect and will remain in effect for the foreseeable future.

The Huntington-Hill Method

- There are two ways to apply the Huntington-Hill method.
- The first method, described in the textbook, involves guessing a modified divisor in a way similar to Jefferson's, Adams's, and Webster's methods.
- The second method, which is the one used by the government, involves no guesswork, but it may take longer to compute.

Outline

(1) The Huntington-Hill Method
- Method 1
- Method 2

(2) Assignment

The Huntington-Hill Method 1

- Compute the standard quotas q_{i} for each state, as in the other methods.
- Round off the standard quota for each state by the following method.
- Let L be the lower quota and U be the upper quota.
- Compute the cutoff as $\sqrt{L U}$.
- If $q_{i}<\sqrt{L U}$, then round down. Otherwise, round up.
- The rounded value is the number of seats for that state.
- If the total number of seats is not M, then choose a modified divisor and repeat the procedure.

Example

Example (Example - Method 1)

- The populations of three states are 3,7 and 10 million people, respectively.
- The total number of seats apportioned to those states is 7 .
- Use Method 1 to determine how many seats each state should get.

Example

Example (Example - Method 1)

- The total population is $P=20$.
- The number of seats is $M=7$.
- The standard divisor is $\mathrm{SD}=\frac{20}{7}=2.857$.

Example

Example (Example - Method 1)

State	Pop (p)	$q=p / S D$	L	U	$\sqrt{L U}$	Seats
A	3					
B	7					
C	10					

Example

Example (Example - Method 1)

State	Pop (p)	$q=p /$ SD	L	U	$\sqrt{L U}$	Seats
A	3	1.05				
B	7	2.45				
C	10	3.50				

Example

Example (Example - Method 1)

State	$\operatorname{Pop}(p)$	$q=p /$ SD	L	U	$\sqrt{L U}$	Seats
A	3	1.05	1	2	$\sqrt{1 \cdot 2}=1.414$	
B	7	2.45	2	3	$\sqrt{2 \cdot 3}=2.449$	
C	10	3.50	3	4	$\sqrt{3 \cdot 4}=3.464$	

Example

Example (Example - Method 1)

State	$\operatorname{Pop}(p)$	$q=p /$ SD	L	U	$\sqrt{L U}$	Seats
A	3	1.05	1	2	$\sqrt{1 \cdot 2}=1.414$	1
B	7	2.45	2	3	$\sqrt{2 \cdot 3}=2.449$	3
C	10	3.50	3	4	$\sqrt{3 \cdot 4}=3.464$	4

Example

Example (Example - Method 1)

- The total number of seats apportioned is 8 , so the "surplus" is -1 .

Example

Example (Example - Method 1)

- The total number of seats apportioned is 8, so the "surplus" is -1 .
- We need a larger divisor.

Example

Example (Example - Method 1)

- The total number of seats apportioned is 8, so the "surplus" is -1 .
- We need a larger divisor.
- Let's try MD $=3.2$.

Example

Example (Example - Method 1)

State	Pop (p)	$q=p / M D$	L	U	$\sqrt{L U}$	Seats
A	3	0.937				
B	7	2.187				
C	10	3.125				

Example

Example (Example - Method 1)

State	Pop (p)	$q=p / M D$	L	U	$\sqrt{L U}$	Seats
A	3	0.937	0	1	$\sqrt{ } 0 \cdot 1=0.000$	
B	7	2.187	2	3	$\sqrt{ } 2 \cdot 3=2.449$	
C	10	3.125	3	4	$\sqrt{ } 3 \cdot 4=3.464$	

Example

Example (Example - Method 1)

State	$\operatorname{Pop}(p)$	$q=p / \mathrm{MD}$	L	U	$\sqrt{L U}$	Seats
A	3	0.937	0	1	$\sqrt{0 \cdot 1}=0.000$	1
B	7	2.187	2	3	$\sqrt{2} \cdot 3=2.449$	2
C	10	3.125	3	4	$\sqrt{3 \cdot 4}=3.464$	3

Example

Example (Example - Method 1)

- The total number of seats apportioned is 6 , so the "surplus" is +1 .

Example

Example (Example - Method 1)

- The total number of seats apportioned is 6 , so the "surplus" is +1 .
- Oops.

Example

Example (Example - Method 1)

- The total number of seats apportioned is 6 , so the "surplus" is +1 .
- Oops.
- We need a smaller divisor.

Example

Example (Example - Method 1)

- The total number of seats apportioned is 6 , so the "surplus" is +1 .
- Oops.
- We need a smaller divisor.
- Let's try MD $=2.86$.

Example

Example (Example - Method 1)

State	Pop (p)	$q=p / M D$	L	U	$\sqrt{L U}$	Seats
A	3	1.049				
B	7	2.447				
C	10	3.498				

Example

Example (Example - Method 1)

State	Pop (p)	$q=p / M D$	L	U	$\sqrt{L U}$	Seats
A	3	1.049	1	2	$\sqrt{1 \cdot 2}=1.414$	
B	7	2.447	2	3	$\sqrt{2 \cdot 3}=2.449$	
C	10	3.498	3	4	$\sqrt{3 \cdot 4}=3.464$	

Example

Example (Example - Method 1)

State	Pop (p)	$q=p / M D$	L	U	$\sqrt{L U}$	Seats
A	3	1.049	1	2	$\sqrt{1 \cdot 2}=1.414$	1
B	7	2.447	2	3	$\sqrt{2 \cdot 3}=2.449$	2
C	10	3.498	3	4	$\sqrt{3 \cdot 4}=3.464$	4

Outline

(1) The Huntington-Hill Method

- Method 1
- Method 2
(2) Assignment

The Huntington-Hill Method

- Initially, every state gets a quota $q=1$ (as required by the Constitution).
- Then divide each state's population p by $D=\sqrt{q(q+1)}$, where q is that state's current quota.
- The state with the largest such quotient gets one more seat, so add 1 to its quota q.
- Repeat the previous 2 steps until all the seats have been apportioned.

Example

Example (Example - Method 2)

- The populations of three states are 3,7 and 10 million people, respectively.
- The total number of seats apportioned to those states is 7.
- Use Method 2 to determine how many seats each state should get.

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{7}{\sqrt{2}}=4.949$
C	10	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{10}{\sqrt{2}}=7.071$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{7}{\sqrt{2}}=4.949$
C	10	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{10}{\sqrt{2}}=7.071$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{7}{\sqrt{2}}=4.949$
C	10	2	$\sqrt{1 \cdot 2}=1.414$	$\frac{10}{\sqrt{2}}=7.071$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{7}{\sqrt{2}}=4.949$
C	10	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{10}{\sqrt{6}}=4.082$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{7}{\sqrt{2}}=4.949$
C	10	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{10}{\sqrt{6}}=4.082$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{1 \cdot 2}=1.414$	$\frac{7}{\sqrt{2}}=4.949$
C	10	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{10}{\sqrt{6}}=4.082$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{7}{\sqrt{6}}=2.857$
C	10	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{10}{\sqrt{6}}=4.082$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{7}{\sqrt{6}}=2.857$
C	10	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{10}{\sqrt{6}}=4.082$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{7}{\sqrt{6}}=2.857$
C	10	3	$\sqrt{2 \cdot 3}=2.449$	$\frac{10}{\sqrt{6}}=4.082$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{7}{\sqrt{6}}=2.857$
C	10	3	$\sqrt{3 \cdot 4}=3.464$	$\frac{10}{\sqrt{12}}=2.886$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{7}{\sqrt{6}}=2.857$
C	10	3	$\sqrt{3 \cdot 4}=3.464$	$\frac{10}{\sqrt{12}}=2.886$

Example

Example (Example - Method 2)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p / D
A	3	1	$\sqrt{1 \cdot 2}=1.414$	$\frac{3}{\sqrt{2}}=2.121$
B	7	2	$\sqrt{2 \cdot 3}=2.449$	$\frac{7}{\sqrt{6}}=2.857$
C	10	4	$\sqrt{3 \cdot 4}=3.464$	$\frac{10}{\sqrt{12}}=2.886$

Which Method to Use?

- Suppose we had 3 states, with populations 2, 5, and 8 million, and 100 seats to apportion.
- Which method would be faster?

Which Method to Use?

- Suppose we had 3 states, with populations 2 , 5 , and 8 million, and 100 seats to apportion.
- Which method would be faster?
- Why?

Which Method to Use?

- Suppose we had 8 states, with populations $1,2,3,4,5,6,7,8$ million, and 9 seats to apportion.
- Which method would be faster?

Which Method to Use?

- Suppose we had 8 states, with populations $1,2,3,4,5,6,7,8$ million, and 9 seats to apportion.
- Which method would be faster?
- Why?

Outline

(1) The Huntington-Hill Method - Method 1
 - Method 2

(2) Assignment

Assignment

Assignment

- Ch. 4: Exercises 43, 45, 49. Use Method 1.
- Ch. 4: Exercises 49, 50. Use Method 2 with $M=10$.

