The Huntington-Hill Method Lecture 22 Section 4.5

Robb T. Koether

Hampden-Sydney College

Fri, Oct 16, 2015

Robb T. Koether (Hampden-Sydney College)

The Huntington-Hill Method

Fri, Oct 16, 2015 1 / 40

э

590

< ロト < 同ト < ヨト < ヨト

- Method 1
- Method 2

590

∃ ► 4 ∃

Outline

The Huntington-Hill Method

- Method 1
- Method 2

э

DQC

<ロト < 回ト < 回ト < 回ト

- In 1929, Congress set the size of the House of Representatives at 435 members.
- In 1941, Congress adopted the Huntington-Hill method for apportioning the seats in the House.
- Both laws remain in effect and will remain in effect for the foreseeable future.

- There are two ways to apply the Huntington-Hill method.
- The first method, described in the textbook, involves guessing a modified divisor in a way similar to Jefferson's, Adams's, and Webster's methods.
- The second method, which is the one used by the government, involves no guesswork, but it may take longer to compute.

э

DQC

<ロト < 回ト < 回ト < 回ト

- Compute the standard quotas *q_i* for each state, as in the other methods.
- Round off the standard quota for each state by the following method.
 - Let *L* be the lower quota and *U* be the upper quota.
 - Compute the cutoff as \sqrt{LU} .
 - If $q_i < \sqrt{LU}$, then round down. Otherwise, round up.
 - The rounded value is the number of seats for that state.
- If the total number of seats is not *M*, then choose a modified divisor and repeat the procedure.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The populations of three states are 3, 7 and 10 million people, respectively.
- The total number of seats apportioned to those states is 7.
- Use Method 1 to determine how many seats each state should get.

∃ ► < ∃ ►</p>

- The total population is P = 20.
- The number of seats is M = 7.
- The standard divisor is $SD = \frac{20}{7} = 2.857$.

э

State	Pop (p)	q = p/SD	L	U	\sqrt{LU}	Seats
A	3					
В	7					
С	10					

æ

DQC

State	Pop (p)	q = p/SD	L	U	\sqrt{LU}	Seats
А	3	1.05				
В	7	2.45				
С	10	3.50				

æ

DQC

State	Pop (<i>p</i>)	q = p/SD	L	U	\sqrt{LU}	Seats
А	3	1.05	1	2	$\sqrt{1\cdot 2} = 1.414$	
В	7	2.45	2	3	$\sqrt{2\cdot 3} = 2.449$	
C	10	3.50	3	4	$\sqrt{3\cdot 4} = 3.464$	

2

590

State	Pop (<i>p</i>)	q = p/SD	L	U	\sqrt{LU}	Seats
А	3	1.05	1	2	$\sqrt{1\cdot 2} = 1.414$	1
В	7	2.45	2	3	$\sqrt{2\cdot 3} = 2.449$	3
C	10	3.50	3	4	$\sqrt{3\cdot 4} = 3.464$	4

2

590

• The total number of seats apportioned is 8, so the "surplus" is -1.

э

< ロト < 同ト < ヨト < ヨト

- The total number of seats apportioned is 8, so the "surplus" is -1.
- We need a larger divisor.

э

< ロト < 同ト < ヨト < ヨト

- The total number of seats apportioned is 8, so the "surplus" is -1.
- We need a larger divisor.
- Let's try MD = 3.2.

3

State	Pop (p)	q = p/MD	L	U	\sqrt{LU}	Seats
A	3	0.937				
В	7	2.187				
С	10	3.125				

æ

DQC

State	Pop (<i>p</i>)	q = p/MD	L	U	\sqrt{LU}	Seats
A	3	0.937	0	1	$\sqrt{0\cdot 1}=0.000$	
В	7	2.187	2	3	$\sqrt{2\cdot 3} = 2.449$	
С	10	3.125	3	4	$\sqrt{3\cdot 4} = 3.464$	

2

590

State	Pop (p)	q = p/MD	L	U	\sqrt{LU}	Seats
А	3	0.937	0	1	$\sqrt{0\cdot 1}=0.000$	1
В	7	2.187	2	3	$\sqrt{2\cdot 3} = 2.449$	2
С	10	3.125	3	4	$\sqrt{3\cdot 4} = 3.464$	3

2

DQC

• The total number of seats apportioned is 6, so the "surplus" is +1.

3

< ロト < 同ト < ヨト < ヨト

The total number of seats apportioned is 6, so the "surplus" is +1.
Oops.

3

< ロト < 同ト < ヨト < ヨト

- The total number of seats apportioned is 6, so the "surplus" is +1.
- Oops.
- We need a smaller divisor.

3

4 ∃ > < ∃ >

I > <
 I >
 I

- The total number of seats apportioned is 6, so the "surplus" is +1.
- Oops.
- We need a smaller divisor.
- Let's try MD = 2.86.

3

State	Pop (p)	$q= ho/{\sf MD}$	L	U	\sqrt{LU}	Seats
A	3	1.049				
В	7	2.447				
С	10	3.498				

æ

DQC

State	Pop (p)	q = p/MD	L	U	\sqrt{LU}	Seats
Α	3	1.049	1	2	$\sqrt{1\cdot 2} = 1.414$	
В	7	2.447	2	3	$\sqrt{2\cdot 3} = 2.449$	
С	10	3.498	3	4	$\sqrt{3\cdot 4} = 3.464$	

2

590

State	Pop (p)	q = p/MD	L	U	\sqrt{LU}	Seats
Α	3	1.049	1	2	$\sqrt{1\cdot 2} = 1.414$	1
В	7	2.447	2	3	$\sqrt{2\cdot 3} = 2.449$	2
С	10	3.498	3	4	$\sqrt{3\cdot 4} = 3.464$	4

æ

590

Method 2

э

DQC

<ロト < 回ト < 回ト < 回ト

- Initially, every state gets a quota q = 1 (as required by the Constitution).
- Then divide each state's population *p* by $D = \sqrt{q(q+1)}$, where *q* is that state's current quota.
- The state with the largest such quotient gets one more seat, so add 1 to its quota *q*.
- Repeat the previous 2 steps until all the seats have been apportioned.

イロト イポト イヨト イヨト 二日

- The populations of three states are 3, 7 and 10 million people, respectively.
- The total number of seats apportioned to those states is 7.
- Use Method 2 to determine how many seats each state should get.

(B)

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{7}{\sqrt{2}} = 4.949$
С	10	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{10}{\sqrt{2}} = 7.071$

æ

590

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{7}{\sqrt{2}} = 4.949$
С	10	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{10}{\sqrt{2}} = 7.071$

æ

590

State	Population (p)	Seats (q)	$D = \sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{7}{\sqrt{2}} = 4.949$
С	10	2	$\sqrt{1\cdot 2} = 1.414$	$\frac{10}{\sqrt{2}} = 7.071$

æ

590

State	Population (p)	Seats (q)	$D = \sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{7}{\sqrt{2}} = 4.949$
С	10	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{10}{\sqrt{6}} = 4.082$

æ

590

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{7}{\sqrt{2}} = 4.949$
С	10	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{10}{\sqrt{6}} = 4.082$

æ

590

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{1\cdot 2} = 1.414$	$\frac{7}{\sqrt{2}} = 4.949$
С	10	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{10}{\sqrt{6}} = 4.082$

æ

590

State	Population (p)	Seats (q)	$D = \sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{7}{\sqrt{6}} = 2.857$
С	10	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{10}{\sqrt{6}} = 4.082$

æ

590

State	Population (p)	Seats (q)	$D = \sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{7}{\sqrt{6}} = 2.857$
С	10	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{10}{\sqrt{6}} = 4.082$

2

590

State	Population (p)	Seats (q)	$D = \sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{7}{\sqrt{6}} = 2.857$
С	10	3	$\sqrt{2\cdot 3} = 2.449$	$\frac{10}{\sqrt{6}} = 4.082$

æ

590

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{7}{\sqrt{6}} = 2.857$
С	10	3	$\sqrt{3\cdot 4} = 3.464$	$\frac{10}{\sqrt{12}} = 2.886$

æ

590

State	Population (p)	Seats (q)	$D = \sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{7}{\sqrt{6}} = 2.857$
С	10	3	$\sqrt{3\cdot 4} = 3.464$	$\frac{10}{\sqrt{12}} = 2.886$

æ

590

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
A	3	1	$\sqrt{1\cdot 2} = 1.414$	$\frac{3}{\sqrt{2}} = 2.121$
В	7	2	$\sqrt{2\cdot 3} = 2.449$	$\frac{7}{\sqrt{6}} = 2.857$
С	10	4	$\sqrt{3\cdot 4} = 3.464$	$\frac{10}{\sqrt{12}} = 2.886$

æ

590

- Suppose we had 3 states, with populations 2, 5, and 8 million, and 100 seats to apportion.
- Which method would be faster?

★ ∃ > < ∃ >

I > <
 I >
 I

- Suppose we had 3 states, with populations 2, 5, and 8 million, and 100 seats to apportion.
- Which method would be faster?
- Why?

3

< ロト < 同ト < ヨト < ヨト

- Suppose we had 8 states, with populations 1, 2, 3, 4, 5, 6, 7, 8 million, and 9 seats to apportion.
- Which method would be faster?

Sac

< 61 b

< ∃ ►

- Suppose we had 8 states, with populations 1, 2, 3, 4, 5, 6, 7, 8 million, and 9 seats to apportion.
- Which method would be faster?
- Why?

3

4 ∃ > < ∃ >

I > <
 I >
 I

Method 2

æ

DQC

Assignment

- Ch. 4: Exercises 43, 45, 49. Use Method 1.
- Ch. 4: Exercises 49, 50. Use Method 2 with M = 10.

Robb T. Koether (Hampden-Sydney College)

The Huntington-Hill Method

Fri, Oct 16, 2015 40 / 40

< ロト < 同ト < ヨト < ヨト