The Plurality-with-Elimination Method Lecture 9 Section 1.4

Robb T. Koether

Hampden-Sydney College

Fri, Sep 8, 2017

Robb T. Koether (Hampden-Sydney College) The Plurality-with-Elimination Method

Fri, Sep 8, 2017 1 / 17

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The Plurality-with-Elimination Method

- 3 A Defect in the Method
- 4 Coombs' Method

< 61 b

프 🖌 🖌 프

The Plurality-with-Elimination Method

2 Variations

- 3 A Defect in the Method
- Coombs' Method
- 5 Assignment

Definition (The Plurality-with-Elimination Method)

By the plurality-with-elimination method (also called instant-runoff voting, or IRV),

- The voters cast their votes for their *first-place* choice.
- If one candidate has a majority of votes, he wins.
- Otherwise, the candidate with the *fewest first-place* votes is eliminated and the process repeats with the remaining candidates until there is a winner.

∃ ► < ∃ ►</p>

- Who is the winner?
- Give the complete ranking (in reverse order of elimination).

∃ >

4 6 1 1 4

Example (The Political Science Club Election)

• What if there is a tie (C and D each received 0 first-place votes)?

Which one do we eliminate?

4 A 1 1 4

Example (The Political Science Club Election)

- What if there is a tie (C and D each received 0 first-place votes)?
- Which one do we eliminate?
- Does it matter?

э

∃ ► < ∃ ►</p>

• Eliminate B. Who wins?

Robb T. Koether (Hampden-Sydney College) The Plurality-with-Elimination Method

- Eliminate B. Who wins?
- Eliminate C. Who wins?

- Eliminate B. Who wins?
- Eliminate C. Who wins?
- Eliminate D. Who wins?

- Eliminate B. Who wins?
- Eliminate C. Who wins?
- Eliminate D. Who wins?
- Let's not worry about that.

∃ ► < ∃ ►</p>

The Plurality-with-Elimination Method

2 Variations

- 3 A Defect in the Method
- Coombs' Method
- 5 Assignment

Rather than eliminate the candidates one per round, we could eliminate

- Two per round (or three, or four, etc.)
- All but two in the first round.

∃ >

Example

Example

Suppose that there are 5 candidates: A, B, C, D, E. The following table summarizes the voters' preferences.

	Preferences						
No. of voters	6	4	4	4	3	1	1
1st	В	В	D	Е	Α	С	С
2nd	Α	Α	Α	С	D	В	D
3rd	С	D	Ε	D	С	Α	Α
4th	D	E	С	В	В	D	В
5th	Е	С	В	Α	Е	Е	Е

• Use the elimination method, 2 at a time, to find the winner.

• Would the result be the same if we eliminated them one at a time?

∃ → < ∃ →</p>

2 Variations

4 Coombs' Method

5 Assignment

A Defect

- What could possibly go wrong with this method?
- Who is the winner?

э

DQC

- What could possibly go wrong with this method?
- Who is the winner?
- What if the 4 voters who preferred A over C (in the last column) changed their minds and preferred C over A.
- ٩
- ۲

∃ ► < ∃ ►</p>

4 A 1

- What could possibly go wrong with this method?
- Who is the winner?
- What if the 4 voters who preferred A over C (in the last column) changed their minds and preferred C over A.

∃ ► 4 Ξ

4 A 1

- What could possibly go wrong with this method?
- Who is the winner?
- What if the 4 voters who preferred A over C (in the last column) changed their minds and preferred C over A.
- That could only help C, right?

∃ >

∃ ⊳

4 A 1

- What could possibly go wrong with this method?
- Who is the winner?
- What if the 4 voters who preferred A over C (in the last column) changed their minds and preferred C over A.
- That could only help C, right?
- Wrong!

3

∃ ► < ∃ ►</p>

< 17 ▶

2 Variations

5 Assignment

DQC

Definition (Coombs' Method)

Coombs' method is a variation of the plurality-with-elimination method. The voters cast their votes for their *last-place* choice. The candidate with the *most last-place* votes is eliminated and the process repeats with the remaining candidates until there is a winner.

イロト イポト イヨト イヨト

Example (The Political Science Club Election)

- Who is the winner?
- Give the complete ranking.
- How do the results compare to the plurality-with-elimination method?

∃ ► < ∃ ►</p>

< 61 b

1 The Plurality-with-Elimination Method

2 Variations

- 3 A Defect in the Method
- Coombs' Method

Assignment

- Chapter 1 Exercises 31, 32, 33, 35, 37, 38, 69a.
- Rework 31, 32, and 33 using Coombs' method. Were the results the same as with the Plurality-with-Elimination Method?

・ 同 ト ・ ヨ ト ・ ヨ ト