Street-Routing Problems Lecture 26 Sections 5.1 - 5.2

Robb T. Koether

Hampden-Sydney College

Fri, Nov 2, 2018

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri, Nov 2, 2018 1 / 23

э

DQC

Robb T. Koether (Hampden-Sydney College)

э

∃ ► < ∃ ►</p>

Street-Routing Problems

2 Definitions

Assignment

Robb T. Koether (Hampden-Sydney College)

æ

DQC

- There are many problems that fall under the heading "Street-Routing Problems."
- We will consider five of them.

< ロト < 同ト < ヨト < ヨト

- There are many problems that fall under the heading "Street-Routing Problems."
- We will consider five of them.
 - The Security Guard Problem

< ロト < 同ト < ヨト < ヨト

- There are many problems that fall under the heading "Street-Routing Problems."
- We will consider five of them.
 - The Security Guard Problem
 - The Mail Carrier Problem

∃ ⊳

4 A 1 1 4

- There are many problems that fall under the heading "Street-Routing Problems."
- We will consider five of them.
 - The Security Guard Problem
 - The Mail Carrier Problem
 - The Königsberg Bridge Problem (famous)

∃ ⊳

4 A 1 1 4

- There are many problems that fall under the heading "Street-Routing Problems."
- We will consider five of them.
 - The Security Guard Problem
 - The Mail Carrier Problem
 - The Königsberg Bridge Problem (famous)
 - The Bridges of Madison County

• I > • = • •

- There are many problems that fall under the heading "Street-Routing Problems."
- We will consider five of them.
 - The Security Guard Problem
 - The Mail Carrier Problem
 - The Königsberg Bridge Problem (famous)
 - The Bridges of Madison County
 - The Traveling Salesman Problem (famous)

• • • • • • • •

Example (The Security Guard and Mail Carrier Problems)

• In the Security Guard Problem, we want route that travels every hallway (street) *once* and has the minimal total length.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri. Nov 2, 2018 5 / 23

∃ ► < ∃ ►</p>

Example (The Security Guard and Mail Carrier Problems)

• In the Mail Carrier Problem, we want a route that every every street *twice* (except the boundary streets) and has the minimal total length.

∃ → < ∃ →</p>

< 17 ≥

The Königsberg Problem

Example (The Königsberg Problem)

- A Königsberger would like to take a stroll across the seven bridges of Königsberg.
- Can it be done without ever crossing the same bridge twice?
- Does it matter where the stroller starts?

∃ ► < ∃ ►</p>

The Bridges of Madison County Problem

Example (The Bridges of Madison County Problem)

- A photographer wants to photograph each of the 11 bridges of Madison County.
- He must cross the bridge to photograph it and each bridge has a \$5 toll.
- What route will minimize the total cost?

The Bridges of Madison County Problem

Example (The Bridges of Madison County Problem)

- A photographer wants to photograph each of the 11 bridges of Madison County.
- He must cross the bridge to photograph it and each bridge has a \$5 toll.
- What route will minimize the total cost?

The Traveling Salesman Problem

Example (The Traveling Salesman Problem)

- A salesman is located in a city.
- He must make a trip during which he visits each of a number of other cities and return to his home city.
- He knows the distance from every city to every other city.
- What route will minimize the total distance traveled?

Street-Routing Problems

2 Definitions

4 Assignment

Robb T. Koether (Hampden-Sydney College)

æ

DQC

A graph is a collection of vertices and edges. We normally draw the vertices as dots and the edges as lines. Each edge connects a pair of vertices.

★ ∃ > < ∃ >

4 A N

- We can give the vertices labels, e.g., A, B, C, etc.
- Then use those labels to identify the edges, e.g., AB, AC, etc.

< 4 →

프 () 이 프

Adjacent Vertices

Definition

Two vertices are adjacent if they are connected by an edge.

э

Sac

∃ ► < ∃ ►</p>

Adjacent Vertices

Definition

Two vertices are adjacent if they are connected by an edge.

э

Sac

∃ ► < ∃ ►</p>

Adjacent Vertices

Definition

Two vertices are adjacent if they are connected by an edge.

э

Sac

∃ ► < ∃ ►</p>

Two vertices are adjacent if they are connected by an edge. If a vertex has an edge connected to itself, that edge is also called a loop.

∃ ▶ ∢

Two vertices are adjacent if they are connected by an edge. If a vertex has an edge connected to itself, that edge is also called a loop. Two edges are adjacent if they share a common vertex.

∃ ► < ∃ ►</p>

Two vertices are adjacent if they are connected by an edge. If a vertex has an edge connected to itself, that edge is also called a loop. Two edges are adjacent if they share a common vertex.

∃ ► < ∃ ►</p>

Definition (Path)

A path is a sequence of distinct adjacent edges, each edge adjacent to the next edge. We may denote a path by listing the vertices through which it passes, e.g., *DABC*.

∃ ▶ ∢

Definition (Circuit)

A circuit is a path that begins and ends at the same vertex, e.g., ABCA.

-

• I > • = • •

Definition (Weighted Graph)

A weighted graph is a graph in which every edge is assigned a value (its weight).

< 回 ト < 三 ト < 三

Outline

Street-Routing Problems

2 Definitions

Assignment

Robb T. Koether (Hampden-Sydney College)

æ

DQC

Example (Social Networks)

• Andy, Bob, Chuck, Dave, and Eddie all belong to a social network.

- Andy is friends with Bob, Chuck, and Dave (and vice versa).
- Bob is friends with Chuck and Dave (and vice versa).
- Dave is friends with Eddie (and vice versa).

< ロト < 同ト < ヨト < ヨト

Example (The Security Guard and Mail Carrier Problems)

• In the Security Guard Problem, we want a "path" that traverses every edge *at least once* and has the minimal total length.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri. Nov 2. 2018 16 / 23

∃ ► 4.

Example (The Security Guard and Mail Carrier Problems)

< 17 ≥

• In the Security Guard Problem, we want a "path" that traverses every edge *at least once* and has the minimal total length.

프 🖌 🖌 프

Example (The Security Guard and Mail Carrier Problems)

• In the Mail Carrier Problem, we want a "path" that traverses every edge *at least twice* (except the boundary edges once) and has the minimal total length.

Example (The Security Guard and Mail Carrier Problems)

- In the Mail Carrier Problem, we want a "path" that traverses every edge *at least twice* (except the boundary edges once) and has the minimal total length.
- With the duplicated edges, the Mail Carrier Problem is the same as the Security Guard Problem.

Example (The Bridges of Königsberg Problem)

• In the Bridges of Königsberg Problem, we want a circuit that traverses each edge *exactly once*.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri, Nov 2, 2018 17 / 23

э

Sac

Example (The Bridges of Königsberg Problem)

• In the Bridges of Königsberg Problem, we want a circuit that traverses each edge *exactly once*.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri, Nov 2, 2018 17 / 23

э

Sac

Example (The Bridges of Königsberg Problem)

• In the Bridges of Königsberg Problem, we want a circuit that traverses each edge *exactly once*.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri, Nov 2, 2018 17 / 23

э

Sac

Example (The Bridges of Königsberg Problem)

• We draw a graph that shows only the relevant parts.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri. Nov 2, 2018 18 / 23

Example (The Bridges of Madison County Problem)

- In the Bridges of Madison County Problem, we want a circuit that traverses each edge *at least once* and has the minimal total length.
- This is the same as the Security Guard Problem.

Example (The Bridges of Madison County Problem)

- In the Bridges of Madison County Problem, we want a circuit that traverses each edge *at least once* and has the minimal total length.
- This is the same as the Security Guard Problem.

∃ ► 4 Ξ

Example (The Traveling Salesman Problem)

• In the Traveling Salesman Problem, we want a circuit that visits each vertex *at least once* and has the minimal total length.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri. Nov 2, 2018 20 / 23

Example (The Traveling Salesman Problem)

 In the Traveling Salesman Problem, we want a circuit that visits each vertex at least once and has the minimal total length.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri. Nov 2, 2018 20 / 23

4 A b

Traveling Salesman Map

Traveling Salesman Map

• With few vertices, we may draw the complete graph.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

Fri. Nov 2, 2018 21 / 23

-

• I > • = • •

Traveling Salesman Map

Traveling Salesman Map

- With few vertices, we may draw the complete graph.
- But with many vertices, that is not practical.

Robb T. Koether (Hampden-Sydney College)

Street-Routing Problems

• • • • • • • • • • • •

Outline

- Street-Routing Problems
- 2 Definitions
- 3 Examples

æ

DQC

Assignment

• Chapter 5: Exercises 2, 3, 7, 13, 15, 19, 20, 21, 22, 27.

Robb T. Koether (Hampden-Sydney College)

3