Residual Analysis and Outliers

> Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

Residual Analysis and Outliers Lecture 47 Sections 13.4 - 13.5

Robb T. Koether

Hampden-Sydney College

Wed, Apr 16, 2008

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Residual Analysis and Outliers

Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

2 Residual Analysis

3 Nonlinear Regression

4

Outliers and Influential Points

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Introduction

Residual Analysis and Outliers

Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

- We will look at a few issues related to linear regression.
- How can we tell whether the model should be linear rather than some other shape?
- What other types of regression are there?
- What are some of the pitfalls of linear regression?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Appropriateness of the Linear Model

Residual Analysis and Outliers

Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

- We can learn a bit about the nature of the model by examining the residuals.
- This is called residual analysis.
- First, we need to find the residuals

$$e_i = y_i - \hat{y}_i.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Appropriateness of the Linear Model

Residual Analysis and Outliers

Robb T. Koether

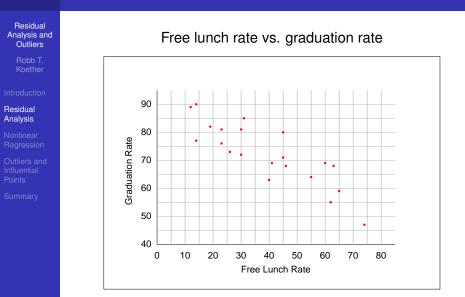
Introduction

Residual Analysis

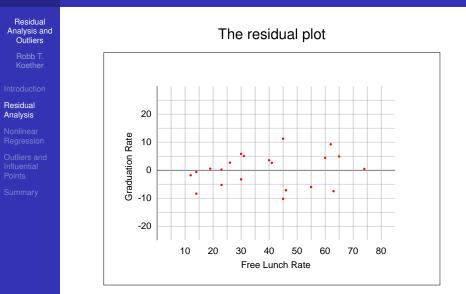
Nonlinear Regression

Outliers and Influential Points

Summary


• To do this on the TI-83, after find the equation of the regression line, enter

$$\mathbb{L}_2 \text{-} \mathbb{Y}_1 \ (\mathbb{L}_1) \rightarrow \mathbb{L}_3$$


◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

to store the residuals in L_3 .

• Then draw a scatterplot of x versus e.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

The Appropriateness of the Linear Model

Residual Analysis and Outliers

Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

- If the residual plot shows no clear pattern, then the linear model is appropriate.
- On the other hand, if the residual plot shows a distinct curvature, then the linear model may not be appropriate.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A Nonlinear Example

Residual Analysis and Outliers

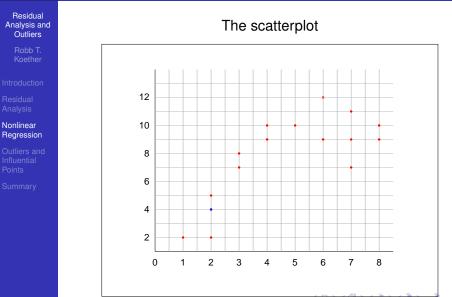
> Robb T. Koether

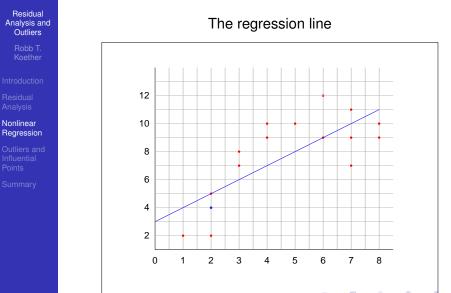
Introduction

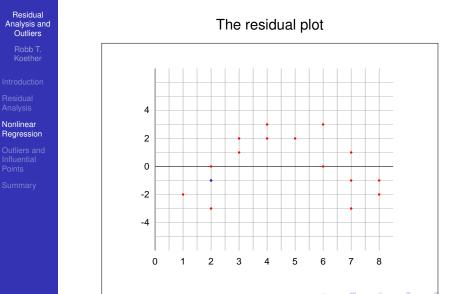
Residual Analysis

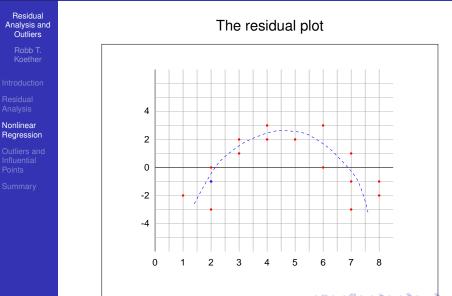
Nonlinear Regression

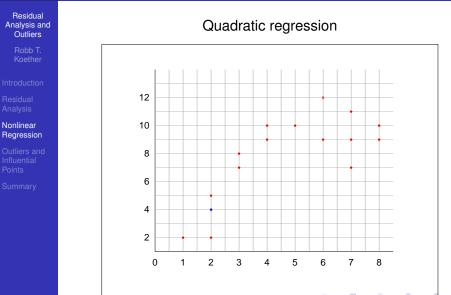
Outliers and Influential Points

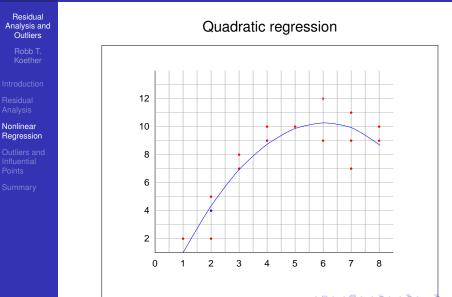

Summary


• Consider the following data.


х	У	х	V
1	2		у
0	2	5 6	12
2 2 2 2 3 3		6	9
2	4		
2	4	6	12
2		7	7
2	5 7	7	9
3	7		
З	8	7	11
4		8	9
4	9	8	10
4	10	0	10


▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @


The Scatterplot



Nonlinear Regression on the TI-83

Residual Analysis and Outliers

> Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

- The TI-83 will do a variety of nonlinear regressions.
- Press STAT > CALC.
- The list includes
 - LinReg linear regression: $\hat{y} = a + bx$
 - QuadReg quadratic regression: $\hat{y} = ax^2 + bx + c$
 - CubicReg cubic regression: $\hat{y} = ax^3 + bx^2 + cx + d$
 - QuartReg quartic regression:
 - $\hat{y} = ax^4 + bx^3 + cx^2 + dx + e$
 - LnReg logarithmic regression: $\hat{y} = a + b \ln x$
 - ExpReg exponential regression: $\hat{y} = ab^x$
 - PwrReg power regression: $\hat{y} = ax^b$
 - Logistic logistic regression: $\hat{y} = \frac{c}{1+ae^{-bx}}$
 - SinReg sinusoidal regression: $\hat{y} = a \sin(bx + c) + d$

Outliers

Residual Analysis and Outliers

Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

Definition (Outlier)

An outlier is a point with an unusually large residual (e.g., more than 2 standard deviations from 0).

Definition (Influential Point)

An influential point is a point that exerts a inordinate influence on the regression line.

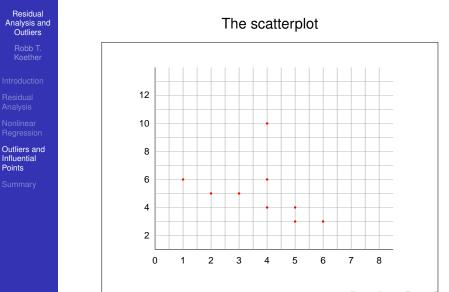
- An outlier may or may not exert an inordinate influence on the regression line.
- An influential point may or may not be an outlier.

Residual Analysis and Outliers

> Robb T. Koether

Introduction

Residual Analysis


Nonlinear Regression

Outliers and Influential Points

Summary

• Consider the following data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Residual Analysis and Outliers

> Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

• The regression line is $\hat{y} = 7.0 - 0.5x$.

,	ĸ	У	ŷ	$y - \hat{y}$
-	1	6		
2	2	5		
3	3	5		
4	4	6 5 5 6 4		
4	4	4		
4	4	10		
Ę	5	3		
Ę	23445556	3 4 3		
6	6	3		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Residual Analysis and Outliers

> Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

• The regression line is $\hat{y} = 7.0 - 0.5x$.

X	У	$y - \hat{y}$	$y - \hat{y}$
1	6	6.5	-0.5
2	5	6.0	-1.0
3	5	5.5	-0.5
4	6	5.0	1.0
4	4	5.0	-1.0
4	10	5.0	5.0
5	3	4.5	-1.5
5	4	4.5	-0.5
6	3	4.0	-1.0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Residual Analysis and Outliers

Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression

Outliers and Influential Points

Summary

- The mean residual is 0.0 and the standard deviation of the residuals is 2.0.
- Thus, the residual 5.0 is 2.5 standard deviations above the mean, an outlier.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- But, it the point (4, 10) influential?
- Remove it and see what the difference is.

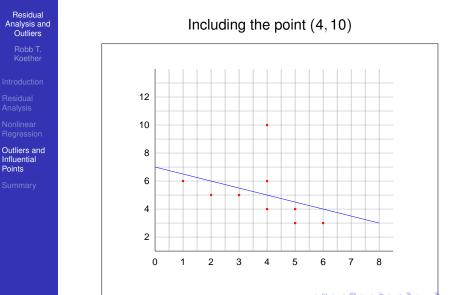
Residual Analysis and Outliers

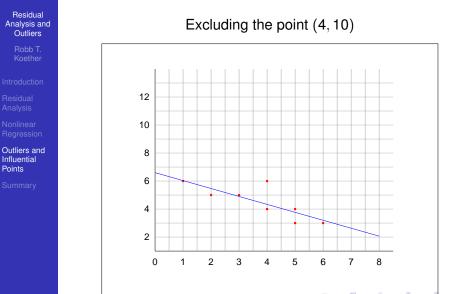
Robb T. Koether

Introduction

Residual Analysis

Nonlinear Regression


Outliers and Influential Points


Summary

• The regression line of the remaining points is $\hat{y} = 6.615 - 0.564x$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

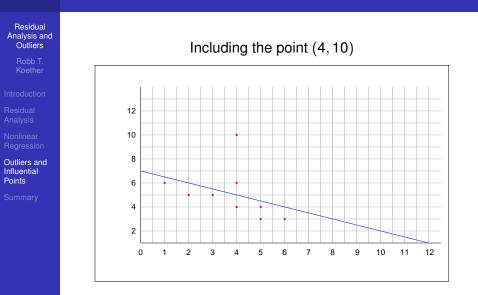
• This is nearly the same as $\hat{y} = 7.0 - 0.5x$.

Residual Analysis and Outliers

> Robb T. Koether

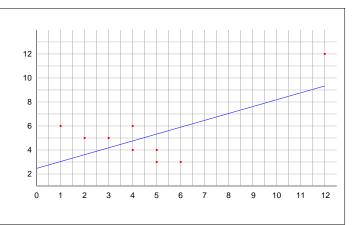
Introduction

Residual Analysis


Nonlinear Regression

Outliers and Influential Points

Summary


- Now change the point (4, 10) to the point (12, 12).
- This changes the regression line to $\hat{y} = 2.767 + 0.55x$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Changing the point (4, 10) to the point (12, 12)

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Summary

Residual Analysis and	
Outliers	
Robb T. Koether	
Introduction	
Residual Analysis	
Nonlinear Regression	
Outliers and	
Influential Points	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Summary