Residual Analysis and Outliers Sections 5.5, 5.6

Lecture 15

Robb T. Koether

Hampden-Sydney College

Mon, Feb 8, 2016

Outline

- Introduction
- Residual Analysis
- Nonlinear Regression
- Outliers and Influential Points
- 6 Assignment

Outline

- Introduction
- Residual Analysis
- Nonlinear Regression
- Outliers and Influential Points
- 6 Assignment

• How do we know that a linear regression model is the best choice?

- How do we know that a linear regression model is the best choice?
- What other types of regression are there?

- How do we know that a linear regression model is the best choice?
- What other types of regression are there?
- There are many other types.

- How do we know that a linear regression model is the best choice?
- What other types of regression are there?
- There are many other types.
- How many would you like?

- How do we know that a linear regression model is the best choice?
- What other types of regression are there?
- There are many other types.
- How many would you like?
- The linear model is by far the simplest, but it is not the only choice.

TI-83 - Nonlinear Regression

TI-83 Nonlinear Regression

- The TI-83 will do a variety of nonlinear regressions.
- Press STAT > CALC.
- The list includes
 - LinReg Linear regression:

$$\hat{y} = a + bx$$
.

• QuadReg - Quadratic regression:

$$\hat{y} = ax^2 + bx + c.$$

• CubicReg - Cubic regression:

$$\hat{\mathbf{v}} = \mathbf{a}\mathbf{x}^3 + \mathbf{b}\mathbf{x}^2 + \mathbf{c}\mathbf{x} + \mathbf{d}.$$

TI-83 - Nonlinear Regression

TI-83 Nonlinear Regression

- And...
 - QuartReg Quartic regression:

$$\hat{y} = ax^4 + bx^3 + cx^2 + dx + e.$$

• LnReg - Logarithmic regression:

$$\hat{y} = a + b \ln x$$
.

• ExpReg - Exponential regression:

$$\hat{y} = ab^x$$
.

TI-83 - Nonlinear Regression

TI-83 Nonlinear Regression

- And...
 - PwrReg Power regression:

$$\hat{y} = ax^b$$
.

• Logistic - Logistic regression:

$$\hat{y} = \frac{c}{1 + ae^{-bx}}.$$

• SinReg - Sinusoidal regression:

$$\hat{y} = a\sin(bx + c) + d.$$

Outline

- Introduction
- Residual Analysis
- Nonlinear Regression
- Outliers and Influential Points
- 5 Assignment

The Appropriateness of the Linear Model

- We can learn a bit about the nature of the model by examining the residuals.
- This is called residual analysis.
- First, we need to find the residuals

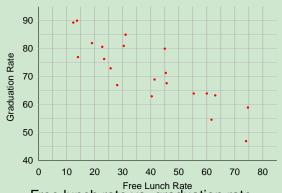
residual =
$$y - \hat{y}_i$$
.

• Then we draw a scatterplot of *x* versus the residuals and see whether there is a pattern.

The Appropriateness of the Linear Model

• To do this on the TI-83, first find the predicted values \hat{y} and store them in \mathbb{L}_3 :

$$Y_1(L_1) \rightarrow L_3$$


• Then find the residuals and store them in L4:

$$\mathtt{L}_2-\mathtt{L}_3\to\mathtt{L}_4$$

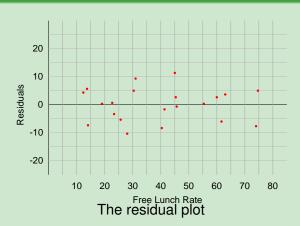
• Then draw a scatterplot of L_1 (x) versus L_4 (residuals).

The Residual Plot

Example (Residual Plots)

Free lunch rate vs. graduation rate

The Residual Plot


Example (Residual Plots)

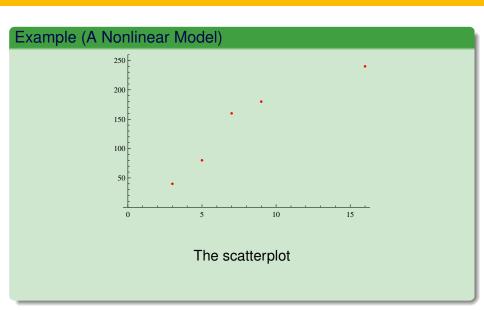
Free lunch rate vs. graduation rate

The Residual Plot

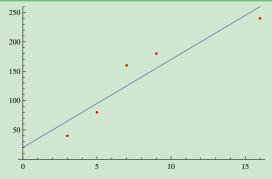
Example (Residual Plots)

The Appropriateness of the Linear Model

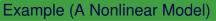
- If the residual plot shows no clear pattern, but just a big blob of points, then the linear model is appropriate.
- On the other hand, if the residual plot shows a distinct curvature, or any other distinct pattern, then the linear model may not be appropriate.

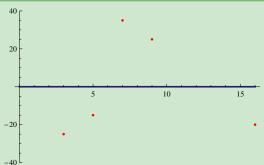

Outline

- Introduction
- Residual Analysis
- Nonlinear Regression
- Outliers and Influential Points
- 5 Assignment

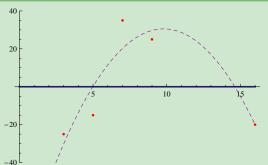

Example (A Nonlinear Model)

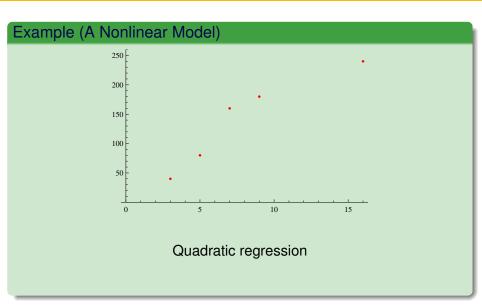
• Consider the following data.

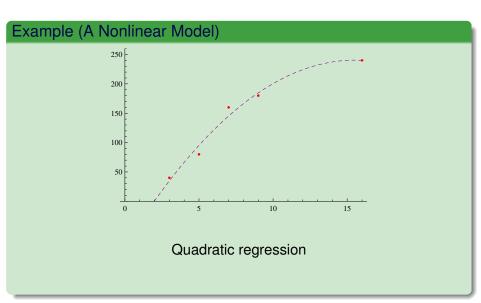

Χ	y
3	40
5	80
7	160
9	180
16	240

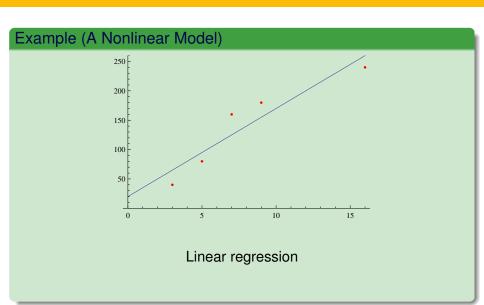


Example (A Nonlinear Model)


The regression line




The residual plot


Example (A Nonlinear Model)

The residual plot

Outline

- Introduction
- 2 Residual Analysis
- Nonlinear Regression
- Outliers and Influential Points
- 5 Assignment

Outliers

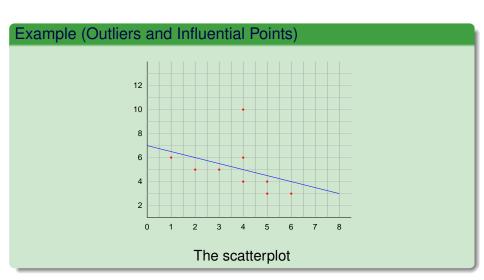
Definition (Outlier)

An outlier is a point with an unusually large residual (e.g., at least 2.5 standard deviations from the mean).

Definition (Influential Point)

An influential point is a point that exerts a inordinate influence on the regression line.

Outliers


- An outlier may or may not be influential.
- An influential point may or may not be an outlier.

Example (Outliers and Influential Points)

Χ	У
1	6
2	5
3	5
4	6
4	4
4	10
5	3
5	4
6	3

Consider the above data.

Example (Outliers and Influential Points)

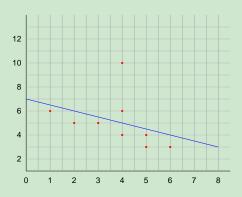
Χ	У	ŷ	$y - \hat{y}$
1	6		
2	5		
3	5		
4	6 5 5 6 4		
4	4		
4	10		
2 3 4 4 5 5 6	3		
5	4		
6	3		

• The regression line is $\hat{y} = 7.0 - 0.5x$.

Example (Outliers and Influential Points)

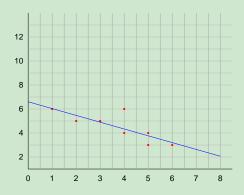
X	У	ŷ	$y - \hat{y}$
1	6	6.5	
2	5	6.0	
3	5	5.5	
4	6	5.0	
4	4	5.0	
4	10	5.0	
5	3	4.5	
2 3 4 4 5 5 6	4	4.5	
6	3	4.0	

• The regression line is $\hat{y} = 7.0 - 0.5x$.


Example (Outliers and Influential Points)

Χ	y	ŷ	$y - \hat{y}$
1	6	6.5	-0.5
2	5	6.0	-1.0
3	5	5.5	-0.5
4	6	5.0	1.0
4	4	5.0	-1.0
4	10	5.0	5.0
5	3	4.5	-1.5
5	4	4.5	-0.5
6	3	4.0	-1.0

• The regression line is $\hat{y} = 7.0 - 0.5x$.


- The mean residual is 0.0 (always) and the standard deviation of these residuals is 2.0.
- Thus, the residual 5.0 is 2.5 standard deviations above the mean, an outlier.
- But, is the point (4, 10) influential?
- Remove it and see what the effect is.

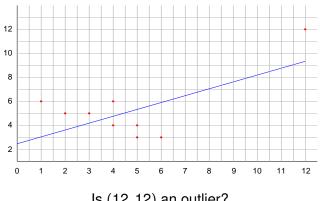
Example (Outliers and Influential Points)

Including the point (4, 10)

Example (Outliers and Influential Points)

Excluding the point (4, 10)

• The regression line of the remaining points is


$$\hat{y} = 6.615 - 0.564x.$$

This is nearly the same as

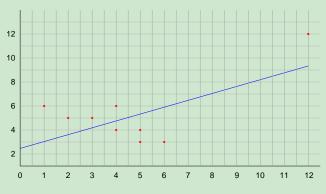
$$\hat{y} = 7.0 - 0.5x$$
.

• Now change the point (4, 10) to the point (12, 12).

X	У
1	6
2	5
3	5
4	6
4	4
5	3
5	4
6	3
12	12

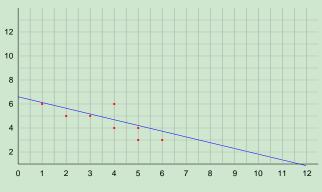
Is (12, 12) an outlier?

• The regression line including (12, 12) is


$$\hat{y} = 2.767 + 0.55x.$$

Removing (12, 12) changes it to

$$\hat{y} = 6.615 - 0.564x$$


.

Example (Outliers and Influential Points)

Including the point (12, 12)

Example (Outliers and Influential Points)

Excluding the point (12, 12)

- Yet the residual of (12, 12) is only 2.63.
- The standard deviation of the set of residuals is 2.12.
- (12, 12) is only 1.24 standard deviations above the mean.
- Therefore, (12, 12) is not an outlier, but it is influential.

Outline

- Introduction
- 2 Residual Analysis
- Nonlinear Regression
- Outliers and Influential Points
- 5 Assignment

Assignment

Assignment

- Read Sections 5.5, 5.6.
- Apply Your Knowledge: 8.
- Exercises 35(c), 42, 55, 61.