TI-83 Instructions
Computing a Normal Probability
Let
X be a normal random variable with mean m and standard deviation s.
The
three basic forms:
P(X < a)
P(X > a)
P(a < X <
b)
Normal
Probability P(X < a)
Method
1
- Press 2nd DISTR. The DISTR menu title is
highlighted.
- Select normalcdf, the item #2, or press
2 and skip the next step.
- Press ENTER. The phrase normalcdf( appears in the
display.
- Enter a very large
negative number, e.g., -1000000.
- Press comma.
- Enter the value of a.
- Press comma.
- Enter the value of m.
- Press comma.
- Enter the valueu of s.
- Press ).
- Press ENTER. The value of P(X < a)
appears in the display.
Method
2 (z-score)
- Enter the value of a.
- Press – (minus).
- Enter the value of m.
- Press ENTER. The value of the deviation a – m appears in the
display.
- Press / (divide). The expression Ans/ appears.
- Enter the value of s.
- Press ENTER. The z-score (a – m)/s appears.
- Compute P(Z
< z-score) as a standard normal probability.
Normal
Probability P(X > a)
- Compute P(X
< a).
- Subtract the value of P(X
< a) from 1. The result
is P(X > a).
Normal
Probability P(a < X < b)
- Compute P(X < b).
- Compute P(X
< a).
- Subtract the value of P(X
< a) from P(X < b) to get P(a < X
< b).