Functions in Economics
 Lecture 1 Section 1.1

Robb T. Koether
Hampden-Sydney College
Wed, Jan 18, 2017

Objectives

Objectives

- To become familiar with functions used in economics.

Function Used in Economics

Functions Used in Economics

- Demand function $D(x)$ - Gives the price p that must be charged for each unit in order for the consumers to be willing to demand x units.

Function Used in Economics

Functions Used in Economics

- Demand function $D(x)$ - Gives the price p that must be charged for each unit in order for the consumers to be willing to demand x units.
- Supply function $S(x)$ - Gives the price p that must be charged for each unit in order for the producers to be willing to supply x units.

Function Used in Economics

Functions Used in Economics

- Demand function $D(x)$ - Gives the price p that must be charged for each unit in order for the consumers to be willing to demand x units.
- Supply function $S(x)$ - Gives the price p that must be charged for each unit in order for the producers to be willing to supply x units.
- Revenue function $R(x)$ - Gives the revenue, in dollars, obtained by the producer for producing and selling x units. If $p(x)$ is the price per unit when x units are produced and sold, then

$$
R(x)=x p(x)
$$

Function Used in Economics

Functions Used in Economics

- Cost function $C(x)$ - Gives the cost, in dollars, by the producer of producing x units.

Function Used in Economics

Functions Used in Economics

- Cost function $C(x)$ - Gives the cost, in dollars, by the producer of producing x units.
- Profit function $P(x)$ - Gives the profit, in dollars, to the producer as a result of producing and selling x units. It may be defined as

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
& =x p(x)-C(x)
\end{aligned}
$$

Function Used in Economics

Functions Used in Economics

- Average Cost function $A C(x)$ - Gives the average cost of production per unit produced. It is defined as

$$
A C(x)=\frac{C(x)}{x}
$$

Function Used in Economics

Functions Used in Economics

- Average Cost function $A C(x)$ - Gives the average cost of production per unit produced. It is defined as

$$
A C(x)=\frac{C(x)}{x}
$$

- Average Revenue function $A R(x)$ - Gives the average revenue to the producer per unit produced and sold. It is defined as

$$
A R(x)=\frac{R(x)}{x}
$$

Function Used in Economics

Functions Used in Economics

- Average Cost function $A C(x)$ - Gives the average cost of production per unit produced. It is defined as

$$
A C(x)=\frac{C(x)}{x}
$$

- Average Revenue function $A R(x)$ - Gives the average revenue to the producer per unit produced and sold. It is defined as

$$
A R(x)=\frac{R(x)}{x}
$$

- Average Profit function $A P(x)$ - Gives the average profit to the producer per unit produced and sold. It is defined as

$$
A P(x)=\frac{P(x)}{x}
$$

Example 1.1.5

Example 1.1.5

Suppose the demand function is

$$
D(x)=-0.27 x+51
$$

and the cost function is

$$
C(x)=2.23 x^{2}+3.5 x+85
$$

in thousands of dollars, where x is the number of thousands of units (coffeemakers) sold. Then the price is $p(x)=D(x)$ assuming that the producer is willing to produce x units at that price.

Example 1.1.5

Example 1.1.5

(a) What is the average cost of producing 4,000 coffeemakers?

Example 1.1.5

Example 1.1.5

(a) What is the average cost of producing 4,000 coffeemakers?
(b) Find the revenue and profit functions $R(x)$ and $P(x)$.

Example 1.1.5

Example 1.1.5

(a) What is the average cost of producing 4,000 coffeemakers?
(b) Find the revenue and profit functions $R(x)$ and $P(x)$.
(c) For what values of x is production of the coffeemakers profitable?

To answer this, we find the break-even point where $P(x)=0$. On one side of that point, $P(x)<0$, and on the other side, $P(x)>0$.

Example 1.1.5

Revenue and Cost

Example 1.1.5

Profit

