Elementary Logic and Proof Lecture 5

Robb T. Koether

Hampden-Sydney College

Mon, Feb 6, 2017

Robb T. Koether (Hampden-Sydney College)

Elementary Logic and Proof

Mon, Feb 6, 2017 1 / 33

э

DQC

< ロト < 同ト < ヨト < ヨト

Outline

Statements

2 Logical Operators

3) latex

5 More LATEX

6 Direct Proof

3

< ロト < 同ト < ヨト < ヨト

Outline

Statements

2 Logical Operators

3 LAT_EX

- 4 Truth Tables
- 5 More LATEX
- Direct Proof
- Proof by Contraposition

3

DQC

Definition (Statement)

A proposition is a sentence that is either true or false.

• See the handout for examples.

э

Outline

Statements

2 Logical Operators

3) LAT_EX

- 4 Truth Tables
- 5 More LATEX
- Direct Proof
- Proof by Contraposition

э

DQC

Definition (Conjunction)

The conjunction operator, denoted \land , joins two statements together into one statement. The conjunction is true if both statements are true. Otherwise, the conjunction is false.

Definition (Disjunction)

The disjunction operator, denoted \lor , joins two statements together into one statement. The disjunction is false if both statements are false. Otherwise, the disjunction is true.

- The English equivalent of conjunction is "and."
- The English equivalent of disjunction is "or."

Definition (Negation)

The negation operator, denoted \neg , acts on a single statement. The negation is true if the statement is false. The negation is false if the statement is true.

• The English equivalent of negation is "not."

∃ ► < ∃ ►</p>

Definition (Conditional Statements)

The conditional operator, denoted \Rightarrow , joins two statements together into one statement. The conditional is false if the first statement is true and the second statement is false. Otherwise, the conditional statement is true.

• The English equivalent of the conditional is "if ... then"

Outline

Statements

2 Logical Operators

3 bt_ex

4 Truth Tables

- 5 More LATEX
- Direct Proof
- Proof by Contraposition

3

DQC

- The LATEX logical operators:
 - Conjuntion \wedge
 - Disjuntion \vee
 - Negation \neg
 - Conditional \Rightarrow (Note the capital R.)

Outline

Statements

2 Logical Operators

3 LAT_EX

- 5 More LATEX
- 6 Direct Proof
- Proof by Contraposition

3

DQC

Definition (Truth Tables)

A truth table for a logical expression is a table that contains every possible combination of values of the variables together with the corresponding value of the expression.

• If there are *n* variables, then there are 2^{*n*} possible combinations of values.

(B)

Example (Truth Tables)

Write a truth table for the expression $(A \land B) \lor C$.

3

DQC

∃ ► < ∃ ►</p>

-

I > <
 I >
 I

Is

 $(A \land B) \lor C$

logically equivalent to

 $A \wedge (B \vee C).$

• How can we tell?

э

DQC

Outline

Statements

2 Logical Operators

3) LATEX

4 Truth Tables

Direct Proof

Proof by Contraposition

Robb T. Koether (Hampden-Sydney College)

э

DQC

- The tabular environment is use to create tables.
- It is delimited by

```
\begin{tabular}{parameters}
```

\end{tabular}

- The parameters tell whether to left justify, center, or right justify the columns and where to draw vertical lines to separate the columns.
 - 1 left justify (for text)
 - c center (for whatever)
 - r right justify (for numbers)
- Intersperse those letters with the vertical stroke | to draw a vertical line in the table.
- $\$ will start a new line.
- \hline will draw a horizontal line between rows.
- & advances to the next column.

500

Example (Truth Table)

```
\begin{tabular}{|c|c||c|}
\hline
$A$ & $B$ & $A\wedge B$ \\
hline\hline
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
F & F & F \\
hline
\end{tabular}
```

Example (Truth Table)

æ

DQC

Outline

Statements

2 Logical Operators

3 LAT_EX

- 4 Truth Tables
- 5 More LATEX

6 Direct Proof

Proof by Contraposition

3

DQC

- A direct proof of the proposition $P \Rightarrow Q$
 - Begins by assuming that *P* is true.
 - Proceeds to draw logical deductions from that assumption.
 - Concludes by deducing that *Q* is true.

Theorem

If n is a multiple of 20, then n is a multiple of 4 and n is a multiple of 5.

3

• Let *n* be a multiple of 20.

Robb T. Koether (Hampden-Sydney College)

æ

DQC

- Let *n* be a multiple of 20.
- Then n = 20k for some integer k.

3

Sac

- Let *n* be a multiple of 20.
- Then n = 20k for some integer k.

• Then
$$n = 4(5k)$$
 and $n = 5(4k)$.

3

Sac

<ロト < 回ト < 回ト < 回ト

- Let *n* be a multiple of 20.
- Then n = 20k for some integer k.
- Then n = 4(5k) and n = 5(4k).
- Therefore, *n* is a multiple of 4 and *n* is a multiple of 5.

э

∃ ► < ∃ ►</p>

I > <
 I >
 I

Outline

Statements

2 Logical Operators

3 LAT_EX

4 Truth Tables

- 5 More LATEX
- 6 Direct Proof

Proof by Contraposition

3

DQC

Theorem

If n is not a multiple of 20, then n is not a multiple of 4 or n is not a multiple of 5.

3

Sac

- The contrapositive of the statement $P \Rightarrow Q$ is the statement $\neg Q \Rightarrow \neg P$.
- These two statements are logically equivalent.
- Therefore, if we can prove one of them, we have proven both of them.
- A proof by contraposition is a direct proof of the contrapositive.

B N A B N

Example (Contrapositive)

- Let A be the statement "n is a multiple of 4."
- Let B be the statement "n is a multiple of 5."
- Let C be the statement "n is a multiple of 20."
- The theorem is of the form

$$\neg C \Rightarrow (\neg A \lor \neg B).$$

Robb T. Koether (Hampden-Sydney College)

3

프 > - 프 >

< 47 ▶

Example (Contrapositive)

• The contrapositive is

$$\neg(\neg A \lor \neg B) \Rightarrow \neg(\neg C),$$

which is the same as

$$(A \wedge B) \Rightarrow C.$$

Robb T. Koether (Hampden-Sydney College)

Mon, Feb 6, 2017 28 / 33

э

Sac

Theorem

If n is a multiple of 4 and n is a multiple of 5, then n is a multiple of 20.

Robb T. Koether (Hampden-Sydney College)

Elementary Logic and Proof

Mon, Feb 6, 2017 29 / 33

3

< ロト < 同ト < ヨト < ヨト

Proof by Contraposition

Proof.

• Let *n* be a multiple of 4 and also a multiple of 5.

э

590

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.

3

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.
- Notice that $1 = 16 15 = 4 \cdot 4 3 \cdot 5$.

3

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.
- Notice that $1 = 16 15 = 4 \cdot 4 3 \cdot 5$.
- Then

n = 16n - 15n

3

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.
- Notice that $1 = 16 15 = 4 \cdot 4 3 \cdot 5$.

Then

n = 16n - 15n= 4(4n) - 3(5n)

3

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.
- Notice that $1 = 16 15 = 4 \cdot 4 3 \cdot 5$.

Then

n = 16n - 15n= 4(4n) - 3(5n) = 4(20m) - 3(20k)

3

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.
- Notice that $1 = 16 15 = 4 \cdot 4 3 \cdot 5$.

Then

n = 16n - 15n= 4(4n) - 3(5n) = 4(20m) - 3(20k) = 20(4m - 3k).

Robb T. Koether (Hampden-Sydney College)

3

- Let *n* be a multiple of 4 and also a multiple of 5.
- Then n = 4k for some integer k and n = 5m for some integer m.
- Notice that $1 = 16 15 = 4 \cdot 4 3 \cdot 5$.

Then

n = 16n - 15n= 4(4n) - 3(5n) = 4(20m) - 3(20k) = 20(4m - 3k).

• Therefore, *n* is a multiple of 20.

3

Example (Contrapositive)

• The contrapositive is

$$\neg(\neg A \lor \neg B) \Rightarrow \neg(\neg C),$$

which is the same as

$$(A \wedge B) \Rightarrow C.$$

Robb T. Koether (Hampden-Sydney College)

Mon, Feb 6, 2017 31 / 33

э

590

Corollary

If n is a multiple of 4 and n is **not** a multiple of 20, then n is **not** a multiple of 5.

э

DQC

• The partial contrapositive of this theorem is the statement: "If *n* is a multiple of 4 and *n* is a multiple of 5, then *n* is a multiple of 20.

B (b) (d)

- The partial contrapositive of this theorem is the statement: "If *n* is a multiple of 4 and *n* is a multiple of 5, then *n* is a multiple of 20.
- Thus, it follows immediately from the previous theorem.