Elementary Logic and Proof Lecture 5

Robb T. Koether
Hampden-Sydney College
Mon, Feb 6, 2017

Outline

(9) Statements
(2) Logical Operators
(3) ${ }_{A T} T_{E} X$
4) Truth Tables
(5) More ${ }^{A} T_{E} X$

6 Direct Proof
(7) Proof by Contraposition

Outline

(9) Statements
(2) Logical Operators
(3) ${ }^{A} T T_{E X}$
(4) Truth Tables
(5) More $\angle A T E X$
(6) Direct Proof
(7) Proof by Contraposition

Statements

Definition (Statement)

A proposition is a sentence that is either true or false.

- See the handout for examples.

Outline

(1) Statements
(2) Logical Operators
(3) LATEX
4) Truth Tables
(5) More $\operatorname{LAT}^{2} \mathrm{E} X$

6 Direct Proof
(7) Proof by Contraposition

Logical Operators

Definition (Conjunction)

The conjunction operator, denoted \wedge, joins two statements together into one statement. The conjunction is true if both statements are true. Otherwise, the conjunction is false.

Definition (Disjunction)

The disjunction operator, denoted \vee, joins two statements together into one statement. The disjunction is false if both statements are false. Otherwise, the disjunction is true.

- The English equivalent of conjunction is "and."
- The English equivalent of disjunction is "or."

Logical Operators

Definition (Negation)

The negation operator, denoted \neg, acts on a single statement. The negation is true if the statement is false. The negation is false if the statement is true.

- The English equivalent of negation is "not."

Conditional Statements

Definition (Conditional Statements)

The conditional operator, denoted \Rightarrow, joins two statements together into one statement. The conditional is false if the first statement is true and the second statement is false. Otherwise, the conditional statement is true.

- The English equivalent of the conditional is "if . . . then"

Outline

(4) Statements
(2) Logical Operators
(3) ${ }^{A} T_{E} X$
(4) Truth Tables
(5) More $\angle A T_{E} X$
(6) Direct Proof
(7) Proof by Contraposition

The Logical Symbols

- The ${ }^{L A} T_{E} X$ logical operators:
- Conjuntion - \wedge
- Disjuntion - \vee
- Negation - \neg
- Conditional - \Rightarrow (Note the capital R.)

Outline

(4) Statements
(2) Logical Operators
(3) LATEX
(4) Truth Tables
(5) More $\operatorname{AL} T_{E X}$

6 Direct Proof
(7) Proof by Contraposition

Truth Tables

Definition (Truth Tables)

A truth table for a logical expression is a table that contains every possible combination of values of the variables together with the corresponding value of the expression.

- If there are n variables, then there are 2^{n} possible combinations of values.

Example

Example (Truth Tables)

Write a truth table for the expression $(A \wedge B) \vee C$.

A	B	C	$A \wedge B$	$(A \wedge B) \vee C$
T	T	T	T	T
T	T	F	T	T
T	F	T	F	T
T	F	F	F	F
F	T	T	F	T
F	T	F	F	F
F	F	T	F	T
F	F	F	F	F

Truth Tables

- Is

$$
(A \wedge B) \vee C
$$

logically equivalent to
$A \wedge(B \vee C)$.

- How can we tell?

Outline

(4) Statements
(2) Logical Operators
(3) $L A T E X$
(4) Truth Tables
(5) More $\angle A T_{E} X$
(6) Direct Proof
(7) Proof by Contraposition

The tabular Environment

- The tabular environment is use to create tables.
- It is delimited by
\begin\{tabular\} \{parameters\} } :
\end\{tabular\} }

The tabular Environment

- The parameters tell whether to left justify, center, or right justify the columns and where to draw vertical lines to separate the columns.
- l- left justify (for text)
- c - center (for whatever)
- r-right justify (for numbers)
- Intersperse those letters with the vertical stroke | to draw a vertical line in the table.
- $\backslash \backslash$ will start a new line.
- \hline will draw a horizontal line between rows.
- \& advances to the next column.

Example

Example (Truth Table)

```
\begin{tabular} {|c|c||c|}
\hline
$A$ & $B$ & $A\wedge B$ \\
\hline\hline
\begin{tabular}{llllll}
\(T\) & \(\&\) & \(T\) & \(\&\) & \(T\) & \(\backslash\) \\
\(T\) & \(\&\) & \(F\) & \(\&\) & \(F\) & \(\backslash\) \\
\(F\) & \(\&\) & \(T\) & \(\&\) & \(F\) & \(\backslash\) \\
\(F\) & \(\&\) & \(F\) & \(\&\) & \(F\) & \(\backslash\)
\end{tabular}
\hline
\end{tabular}
```


Example

Example (Truth Table)

A	B	$A \wedge B$
T	T	T
T	F	F
F	T	F
F	F	F

Outline

(4) Statements
(2) Logical Operators
(3) $L_{A} T_{E X}$
(4) Truth Tables
(5) More LATEX

6 Direct Proof
(7) Proof by Contraposition

Direct Proof

- A direct proof of the proposition $P \Rightarrow Q$
- Begins by assuming that P is true.
- Proceeds to draw logical deductions from that assumption.
- Concludes by deducing that Q is true.

Example

Theorem

If n is a multiple of 20 , then n is a multiple of 4 and n is a multiple of 5 .

Direct Proof

Proof.

- Let n be a multiple of 20 .

Direct Proof

Proof.

- Let n be a multiple of 20 .
- Then $n=20 k$ for some integer k.

Direct Proof

Proof.

- Let n be a multiple of 20 .
- Then $n=20 k$ for some integer k.
- Then $n=4(5 k)$ and $n=5(4 k)$.

Direct Proof

Proof.

- Let n be a multiple of 20 .
- Then $n=20 k$ for some integer k.
- Then $n=4(5 k)$ and $n=5(4 k)$.
- Therefore, n is a multiple of 4 and n is a multiple of 5 .

Outline

(4) Statements

(2) Logical Operators
(3) $A A T_{E} X$
(4) Truth Tables
(5) More $\operatorname{LAT}^{T} E X$
(6) Direct Proof
(7) Proof by Contraposition

Example

Theorem

If n is not a multiple of 20 , then n is not a multiple of 4 or n is not a multiple of 5 .

Proof by Contraposition

- The contrapositive of the statement $P \Rightarrow Q$ is the statement $\neg Q \Rightarrow \neg P$.
- These two statements are logically equivalent.
- Therefore, if we can prove one of them, we have proven both of them.
- A proof by contraposition is a direct proof of the contrapositive.

Example

Example (Contrapositive)

- Let A be the statement " n is a multiple of 4 ."
- Let B be the statement " n is a multiple of 5 ."
- Let C be the statement " n is a multiple of 20 ."
- The theorem is of the form

$$
\neg C \Rightarrow(\neg A \vee \neg B) .
$$

Example

Example (Contrapositive)

- The contrapositive is

$$
\neg(\neg A \vee \neg B) \Rightarrow \neg(\neg C),
$$

which is the same as

$$
(A \wedge B) \Rightarrow C .
$$

Example

Theorem
 If n is a multiple of 4 and n is a multiple of 5 , then n is a multiple of 20 .

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.
- Notice that $1=16-15=4 \cdot 4-3 \cdot 5$.

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.
- Notice that $1=16-15=4 \cdot 4-3 \cdot 5$.
- Then

$$
n=16 n-15 n
$$

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.
- Notice that $1=16-15=4 \cdot 4-3 \cdot 5$.
- Then

$$
\begin{aligned}
n & =16 n-15 n \\
& =4(4 n)-3(5 n)
\end{aligned}
$$

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.
- Notice that $1=16-15=4 \cdot 4-3 \cdot 5$.
- Then

$$
\begin{aligned}
n & =16 n-15 n \\
& =4(4 n)-3(5 n) \\
& =4(20 m)-3(20 k)
\end{aligned}
$$

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.
- Notice that $1=16-15=4 \cdot 4-3 \cdot 5$.
- Then

$$
\begin{aligned}
n & =16 n-15 n \\
& =4(4 n)-3(5 n) \\
& =4(20 m)-3(20 k) \\
& =20(4 m-3 k) .
\end{aligned}
$$

Proof by Contraposition

Proof.

- Let n be a multiple of 4 and also a multiple of 5 .
- Then $n=4 k$ for some integer k and $n=5 m$ for some integer m.
- Notice that $1=16-15=4 \cdot 4-3 \cdot 5$.
- Then

$$
\begin{aligned}
n & =16 n-15 n \\
& =4(4 n)-3(5 n) \\
& =4(20 m)-3(20 k) \\
& =20(4 m-3 k) .
\end{aligned}
$$

- Therefore, n is a multiple of 20 .

Example

Example (Contrapositive)

- The contrapositive is

$$
\neg(\neg A \vee \neg B) \Rightarrow \neg(\neg C),
$$

which is the same as

$$
(A \wedge B) \Rightarrow C .
$$

Example

Corollary

If n is a multiple of 4 and n is not a multiple of 20 , then n is not a multiple of 5 .

Proof by Partial Contraposition

Proof.

- The partial contrapositive of this theorem is the statement: "If n is a multiple of 4 and n is a multiple of 5 , then n is a multiple of 20 .

Proof by Partial Contraposition

Proof.

- The partial contrapositive of this theorem is the statement: "If n is a multiple of 4 and n is a multiple of 5 , then n is a multiple of 20 .
- Thus, it follows immediately from the previous theorem.

