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Statements

Definition (Statement)
A proposition is a sentence that is either true or false.

See the handout for examples.
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Logical Operators

Definition (Conjunction)
The conjunction operator, denoted ∧, joins two statements together
into one statement. The conjunction is true if both statements are true.
Otherwise, the conjunction is false.

Definition (Disjunction)
The disjunction operator, denoted ∨, joins two statements together into
one statement. The disjunction is false if both statements are false.
Otherwise, the disjunction is true.

The English equivalent of conjunction is “and.”
The English equivalent of disjunction is “or.”
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Logical Operators

Definition (Negation)
The negation operator, denoted ¬, acts on a single statement. The
negation is true if the statement is false. The negation is false if the
statement is true.

The English equivalent of negation is “not.”
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Conditional Statements

Definition (Conditional Statements)
The conditional operator, denoted⇒, joins two statements together
into one statement. The conditional is false if the first statement is true
and the second statement is false. Otherwise, the conditional
statement is true.

The English equivalent of the conditional is “if . . . then . . . .”
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The Logical Symbols

The LATEX logical operators:
Conjuntion – \wedge
Disjuntion – \vee
Negation – \neg
Conditional – \Rightarrow (Note the capital R.)
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Truth Tables

Definition (Truth Tables)
A truth table for a logical expression is a table that contains every
possible combination of values of the variables together with the
corresponding value of the expression.

If there are n variables, then there are 2n possible combinations of
values.
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Example

Example (Truth Tables)
Write a truth table for the expression (A ∧ B) ∨ C.

A B C A ∧ B (A ∧ B) ∨ C
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F
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Truth Tables

Is
(A ∧ B) ∨ C

logically equivalent to
A ∧ (B ∨ C).

How can we tell?
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The tabular Environment

The tabular environment is use to create tables.
It is delimited by
\begin{tabular}{parameters}

...
\end{tabular}
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The tabular Environment

The parameters tell whether to left justify, center, or right justify
the columns and where to draw vertical lines to separate the
columns.

l – left justify (for text)
c – center (for whatever)
r – right justify (for numbers)

Intersperse those letters with the vertical stroke | to draw a vertical
line in the table.
\\ will start a new line.
\hline will draw a horizontal line between rows.
& advances to the next column.
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Example

Example (Truth Table)
\begin{tabular}{|c|c||c|}
\hline
$A$ & $B$ & $A\wedge B$ \\
\hline\hline
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
\hline
\end{tabular}
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Example

Example (Truth Table)

A B A ∧ B
T T T
T F F
F T F
F F F

Robb T. Koether (Hampden-Sydney College) Elementary Logic and Proof Mon, Feb 6, 2017 19 / 33



Outline

1 Statements

2 Logical Operators

3 LATEX

4 Truth Tables

5 More LATEX

6 Direct Proof

7 Proof by Contraposition

Robb T. Koether (Hampden-Sydney College) Elementary Logic and Proof Mon, Feb 6, 2017 20 / 33



Direct Proof

A direct proof of the proposition P ⇒ Q
Begins by assuming that P is true.
Proceeds to draw logical deductions from that assumption.
Concludes by deducing that Q is true.
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Example

Theorem
If n is a multiple of 20, then n is a multiple of 4 and n is a multiple of 5.
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Direct Proof

Proof.
Let n be a multiple of 20.

Then n = 20k for some integer k .
Then n = 4(5k) and n = 5(4k).
Therefore, n is a multiple of 4 and n is a multiple of 5.
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Example

Theorem
If n is not a multiple of 20, then n is not a multiple of 4 or n is not a
multiple of 5.
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Proof by Contraposition

The contrapositive of the statement P ⇒ Q is the statement
¬Q ⇒ ¬P.
These two statements are logically equivalent.
Therefore, if we can prove one of them, we have proven both of
them.
A proof by contraposition is a direct proof of the contrapositive.
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Example

Example (Contrapositive)
Let A be the statement “n is a multiple of 4.”
Let B be the statement “n is a multiple of 5.”
Let C be the statement “n is a multiple of 20.”
The theorem is of the form

¬C ⇒ (¬A ∨ ¬B).
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Example

Example (Contrapositive)
The contrapositive is

¬(¬A ∨ ¬B)⇒ ¬(¬C),

which is the same as
(A ∧ B)⇒ C.
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Example

Theorem
If n is a multiple of 4 and n is a multiple of 5, then n is a multiple of 20.
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Proof by Contraposition

Proof.
Let n be a multiple of 4 and also a multiple of 5.

Then n = 4k for some integer k and n = 5m for some integer m.
Notice that 1 = 16− 15 = 4 · 4− 3 · 5.
Then

n = 16n − 15n
= 4(4n)− 3(5n)
= 4(20m)− 3(20k)
= 20(4m − 3k).

Therefore, n is a multiple of 20.
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Example

Example (Contrapositive)
The contrapositive is

¬(¬A ∨ ¬B)⇒ ¬(¬C),

which is the same as
(A ∧ B)⇒ C.
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Example

Corollary
If n is a multiple of 4 and n is not a multiple of 20, then n is not a
multiple of 5.
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Proof by Partial Contraposition

Proof.
The partial contrapositive of this theorem is the statement: “If n is
a multiple of 4 and n is a multiple of 5, then n is a multiple of 20.

Thus, it follows immediately from the previous theorem.
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