Properties of Sets Lecture 29 Section 6.2

Robb T. Koether

Hampden-Sydney College

Thu, Mar 6, 2014

Robb T. Koether (Hampden-Sydney College)

Properties of Sets

Thu, Mar 6, 2014 1 / 23

э

DQC

< ロト < 同ト < ヨト < ヨト

Robb T. Koether (Hampden-Sydney College)

э

DQC

∃ ► < ∃ ►</p>

Properties of Sets

2 Proofs with Sets

æ

DQC

<ロト < 回ト < 回ト < 回ト

Commutative Laws	
Sets	Boolean
$A \cup B = B \cup A$	$oldsymbol{ ho}ee q\equiv oldsymbol{q}ee oldsymbol{ ho}$
$A \cap B = B \cap A$	$oldsymbol{p}\wedgeoldsymbol{q}\equivoldsymbol{q}\wedgeoldsymbol{p}$
Associative Laws	
Sets	Boolean
$(A\cup B)\cup C=A\cup (B\cup C)$	$(p \lor q) \lor r) \equiv p \lor (q \lor r)$
$(A\cap B)\cap C=A\cap (B\cap C)$	$(p \wedge q) \wedge r) \equiv p \wedge (q \wedge r)$
Distributive Laws	
Sets	Boolean
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$ p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$

æ

DQC

Identity Laws	
Sets	Boolean
$A \cup \emptyset = A$	$p \lor F \equiv p$
$A \cap U = A$	$p \wedge T \equiv p$
Complement Laws	
Sets	Boolean
$A \cup A^c = U$	$p \lor \sim p \equiv T$
$A \cap A^c = \varnothing$	$p \land \sim p \equiv F$
Double Complement Laws	
Sets	Boolean
$(A^c)^c = A$	$\sim (\sim p) \equiv p$

Robb T. Koether (Hampden-Sydney College)

æ

DQC

<ロト < 回ト < 回ト < 回ト

Idempotent Laws	
Sets	Boolean
$A \cup A = A$	$p \lor p \equiv p$
$A \cap A = A$	$oldsymbol{ ho}\wedgeoldsymbol{ ho}\equivoldsymbol{ ho}$
Universal Bound Laws	
Sets	Boolean
$A \cup U = U$	$p \lor T \equiv T$
$A \cap \varnothing = \varnothing$	$p \wedge F \equiv F$
DeMorgan's Laws	
Sets	Boolean
$(A \cup B)^c = A^c \cap B^c$	$\sim (p \lor q) \equiv \sim p \land \sim q$
$(A \cap B)^c = A^c \cup B^c$	$\sim (p \wedge q) \equiv \sim p \lor \sim q$

æ

DQC

< ロト < 同ト < ヨト < ヨト

- The connection between sets and boolean expressions is the predicate.
- For example, recall

$$A \cup B = \{x \mid P(x) \lor Q(x)\},\$$

$$A \cap B = \{x \mid P(x) \land Q(x)\},\$$

$$A^{c} = \{x \mid \sim P(x)\}.$$

э

• What set expressions are equivalent to

p
ightarrow q, p
ightarrow q, $p \oplus q,$ p NAND q,p NOR q.

æ

Properties of Sets

æ

DQC

• To prove that two sets A and B are equal,

- Prove that $A \subseteq B$ and
- Prove that $B \subseteq A$.

3

< ロト < 同ト < ヨト < ヨト

Theorem

For any three sets A, B, and C,

$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Robb T. Koether (Hampden-Sydney College)

3

DQC

- Let A, B, C be any three sets.
- First, show that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.
 - Let $x \in A \cup (B \cap C)$.
 - Then $x \in A$ or $x \in B \cap C$.
 - If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$.
 - So $x \in (A \cup B) \cap (A \cup C)$.

э

∃ ► < ∃ ►</p>

4 A 1

- On the other hand, if $x \in B \cap C$, then $x \in B$ and $x \in C$.
- So $x \in A \cup B$ and $x \in A \cup C$.
- Therefore, $x \in (A \cup B) \cap (A \cup C)$.

3

< ロト < 同ト < ヨト < ヨト

- Now, show that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.
 - Let $x \in (A \cup B) \cap (A \cup C)$.
 - Then $x \in A \cup B$ and $x \in A \cup C$.
 - If $x \in A$, then $x \in A \cup (B \cap C)$.
 - If $x \notin A$, then $x \in B$ and $x \in C$.
 - So $x \in B \cap C$ and therefore, $x \in A \cup (B \cap C)$.

• Therefore, $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$.

3

∃ ► < ∃ ►</p>

< 4 →

- To prove that a set *A* is empty,
 - Let $x \in A$, i.e., suppose that $A \neq \emptyset$.
 - Reach a contradiction.

4 3 > 4 3

4 A 1

Theorem

For any sets A and B,

$$(A-B)\cap (B-A)=\varnothing.$$

Robb T. Koether (Hampden-Sydney College)

Thu, Mar 6, 2014 17 / 23

æ

DQC

- Let A and B be sets and let $x \in (A B) \cap (B A)$.
- Then $x \in A B$ and $x \in B A$.
- But if $x \in A B$, then $x \in A$ and $x \notin B$.
- And if $x \in B A$, then $x \in B$ and $x \notin A$.
- This is a contradiction, so $(A B) \cap (B A) = \emptyset$.

- 3

Theorem

For any sets A, B, and C, if $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Robb T. Koether (Hampden-Sydney College)

3

DQC

- Let A, B, and C be sets and let $x \in A \cap C$.
- Then $x \in A$ and $x \in C$.
- But if $x \in A$, then $x \in B$, because $A \subseteq B$.
- So $x \in B \cap C$.
- But $B \cap C = \emptyset$, which is a contradiction.
- Therefore, $A \cap C = \emptyset$.

3

★ ∃ > < ∃ >

< 17 ▶

- Translate the last two theorems into boolean expressions.
- Do the proofs also translate?

∃ ⊳

Properties of Sets

2 Proofs with Sets

æ

DQC

<ロト < 回ト < 回ト < 回ト

Assignment

- Read Section 6.2, pages 352 364.
- Exercises 3, 4, 9, 10, 14, 15, 18, 19, 31, 32, 34, page 364.

3

・ 同 ト ・ ヨ ト ・ ヨ ト