Composition of Functions Lecture 34 Section 7.3

Robb T. Koether

Hampden-Sydney College

Mon, Mar 25, 2013

Robb T. Koether (Hampden-Sydney College)

Composition of Functions

Mon, Mar 25, 2013 1 / 30

э

Robb T. Koether (Hampden-Sydney College)

< A.

Outline

Composition of Functions

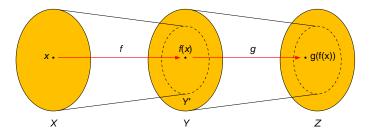
2 Inverses of Functions

3 Theorems about Composition

Assignment

Definition (Composition of Functions)

Let $f : X \to Y$ and $g : Y' \to Z$, where range $(f) \subseteq Y'$. The composition of f with g is the function $g \circ f : X \to Z$ defined by $(g \circ f)(x) = g(f(x))$.



- Let $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 2x + 3.
- Let $g : \mathbb{R} \to \mathbb{R}$ by g(x) = 4x + 5.
- Find $f \circ g$ and $g \circ f$.
- Are they the same?

3

• Recall that, for any set X, I_X is the identity function on X:

$$I_X(x) = x.$$

• Let $f : X \to Y$ be a function.

Then

 $f \circ I_X = f$

and

 $I_{Y} \circ f = f.$

3

Outline

Composition of Functions

Inverses of Functions

3 Theorems about Composition

Assignment

Sac

- Let $f : X \to Y$ be a one-to-one correspondence.
- Then the inverse $f^{-1}: Y \to X$ is a function and

$$f^{-1} \circ f = I_X$$

and

$$f\circ f^{-1}=I_{\mathsf{Y}}.$$

Robb T. Koether (Hampden-Sydney College)

э

- Let $f: X \to Y$ and $g: Y \to X$. Then $g = f^{-1}$ if and only if $g \circ f = I_X$ and $f \circ g = I_Y$.
 - This property allows us to *verify* that *g* is the inverse of *f*, but it does not show us how to *find* the inverse of *f*.

- Let $f : \mathbb{R}^+ \to (1, \infty)$ by $f(x) = x^2 + 1$.
- Let $g:(1,\infty) \to \mathbb{R}^+$ by $g(x) = \sqrt{x-1}$.
- Show that $g = f^{-1}$.

イロト イロト イヨト イヨト 二日

- Let *b* be a real number with b > 1.
- Let $f : \mathbb{R} \to \mathbb{R}^+$ by $f(x) = b^x$.
- Let $g : \mathbb{R}^+ \to \mathbb{R}$ by $g(x) = \log_b x$.
- By definition,

$$\log_b b^x = x$$
 for all $x \in \mathbb{R}$

and

$$b^{\log_b x} = x$$
 for all $x \in \mathbb{R}^+$.

• Thus, *f* and *g* are inverses of each other.

3

- Suppose that we can find logarithms to the base *b*, but we want a logarithm to some other base *a*.
- For example, in Computer Science, we often need a base-2 logarithm, but our calculators have only base-10 and base-*e* logarithms.
- What do we do?

• Let $y = \log_a x$.

Then

$$x = a^{y},$$

$$og_{b} x = \log_{b} a^{y}$$

$$= y \log_{b} a.$$

• Therefore,

$$y = \frac{\log_b x}{\log_b a}.$$

Robb T. Koether (Hampden-Sydney College)

Composition of Functions

Mon. Mar 25, 2013 13 / 30

3

590

- Find log₂ 10.
- Find log₂ 100.
- Find log₂ 1000.
- Find log₂ 2000.
- Find log₂ 4000.
- Find log₁₆ of each of those 5 numbers.

э

Outline

Composition of Functions

3 Theorems about Composition

4 Assignment

Sac

ヨト・モヨト

I > <
 I >
 I

Let $f : X \to Y$ and $g : Y \to Z$ be one-to-one functions. Then $g \circ f : X \to Z$ is one-to-one. That is, the composition of one-to-one functions is one-to-one.

イロト 不得 トイヨト イヨト 二日

Proof.

- Let $f: X \to Y$ and $g: Y \to Z$ be one-to-one functions.
- Suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$ for some $x_1, x_2 \in X$.
- That is, $g(f(x_1)) = g(f(x_2))$.
- But g is one-to-one, so $f(x_1) = f(x_2)$.
- But then *f* is also one-to-one, so $x_1 = x_2$.
- Therefore, $g \circ f$ is one-to-one.

4 A 1

Let $f : X \to Y$ and $g : Y \to Z$ be onto functions. Then $g \circ f : X \to Z$ is onto. That is, the composition of onto functions is onto.

Proof.

- Let $f : X \to Y$ and $g : Y \to Z$ be onto functions.
- Let $z \in Z$.
- Then, because g is onto, there exists $y \in Y$ such that g(y) = z.
- However, *f* is also onto, so there exists $x \in X$ such that f(x) = y.

• So
$$(g \circ f)(x) = g(f(x)) = g(y) = z$$
.

• Therefore, $g \circ f$ is onto.

∃ ► < ∃ ►</p>

Let $f : X \to Y$ and $g : Y \to Z$ be functions and suppose that $g \circ f$ is one-to-one. Then f is one-to-one, but g is not necessarily one-to-one.

A B M A B M

Proof.

- Let *f* : *X* → *Y* and *g* : *Y* → *Z* be functions and suppose that *g* ∘ *f* is one-to-one.
- Let $x_1, x_2 \in X$ and suppose that $f(x_1) = f(x_2)$.
- Then $g(f(x_1)) = g(f(x_2))$.
- It follows that $x_1 = x_2$ because $g \circ f$ is one-to-one.
- Therefore, f is one-to-one.

э

∃ ► < ∃ ►</p>

- How do we show that g is not necessarily one-to-one?
- All we need is one example where *f* is one-to-one and *g* is not one-to-one, but *g* ∘ *f* is one-to-one.
- Example?

3

∃ ► < ∃ ►</p>

Let $f : X \to Y$ and $g : Y \to Z$ be functions and suppose that $g \circ f$ is onto. Then g is onto, but f is not necessarily onto.

Proof.

How would we prove this?

Let $f : X \to Y$ and $g : Y \to X$ be functions and suppose that $g \circ f = I_X$. Then f is one-to-one and g is onto.

A B F A B F

Proof.

- The fact that *f* is one-to-one follows from an earlier theorem, because *g* ∘ *f* is one-to-one.
- The fact that g is onto follows from an earlier theorem, because g ∘ f is onto.

∃ ► < ∃ ►</p>

• Let $Y = \{x \in \mathbb{R} \mid x \ge 0\}$ and define • $f : \mathbb{R} \to Y$ by $f(x) = x^2$.

- $g: Y \to \mathbb{R}$ by $g(x) = \sqrt{x}$.
- Is f one-to-one? onto?
- Is g one-to-one? onto?
- Is $g \circ f$ one-to-one? onto?
- Is $f \circ g$ one-to-one? onto?

э

∃ ► < ∃ ►</p>

4 A 1

- Let $X = \{x \in \mathbb{R} \mid x \ge 1\}.$
- Let $f: X \to \mathbb{R}$ by $f(x) = x \ln x$.
- Is f one-to-one? onto?
- What is *f*⁻¹?

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Outline

- Composition of Functions
- Inverses of Functions
- 3 Theorems about Composition

Sac

ヨト・モヨト

Collected

- Sec. 7.1: 14, 42, 47.
- Sec. 7.2: 12b, 18, 49.

э

Sac

<ロト < 回ト < 回ト < 回ト

Assignment

- Read Sections 7.3, pages 416 426.
- Exercises 1, 3, 8, 11, 16, 17, 21, 22, 24, page 426.

3