Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homeworl Review

Chomsky Normal Form

New start symbol

Eliminate all ε-rule: Eliminate all unit

Eliminate all mixe rules

Derivations in

The Membershi Problem for

Assianment

Context-Free Grammars - Chomsky Normal Form

Lecture 16 Section 2.1

Robb T. Koether

Hampden-Sydney College

Wed, Oct 1, 2008

Outline

Context-Free Grammars -Chomsky Normal Form

> Robb 1 Koethe

Homewood Review

Chomsky Normal Forn

New start symbol Eliminate all ε-rules Eliminate all mixed rules Eliminate all mixed rules Eliminate all long rules

Derivations ir CNF

The Membership Problem for CFGs Homework Review

- Chomsky Normal Form
 - New start symbol
 - Eliminate all ε -rules
 - Eliminate all unit rules
 - Eliminate all mixed rules
 - Eliminate all long rules
- Operivations in CNF
- 4 The Membership Problem for CFGs
- 6 Assignment

Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homework Review

Chomsky Normal Forr

New start symbol
Eliminate all &-rules
Eliminate all unit
rules
Eliminate all mixed
rules
Eliminate all long

Derivations in

The Membership Problem for CEGs

Assignment

Exercise 3, page 128.

Answer each part for the following context-free grammar *G*.

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & \mathbf{a}T\mathbf{b} \mid \mathbf{b}T\mathbf{a} \\ T & \rightarrow & XTX \mid X \mid \varepsilon \\ X & \rightarrow & \mathbf{a} \mid \mathbf{b} \end{array}$$

- (a) What are the variables of *G*?
- (b) What are the terminals of *G*?
- (c) Which is the start variable of *G*?

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Forr

New start symbol Eliminate all ε -rules Eliminate all unit rules

Eliminate all mixed rules
Eliminate all long rules

Derivations in CNF

The Membership Problem for

Assignment

Solution

- (a) The variables are $\{R, S, T, X\}$.
- (b) The terminals are $\{a, b\}$.
- (c) The start symbol is R.

Context-Free Grammars -Chomsky Normal Form

Robb T Koethe

Homework Review

Chomsky Normal Forn

New start symbol
Eliminate all ɛ-rules
Eliminate all unit
rules
Eliminate all mixed
rules
Eliminate all long

Derivations in

The Membership Problem for CFGs

Assignment

Exercise 3, page 128.

- (d) Give three strings in L(G).
- (e) Give three strings *not* in L(G).
- (f) True or False: $T \Rightarrow aba$.
- (g) True or False: $T \stackrel{*}{\Rightarrow} aba$.
- (h) True or False: $T \Rightarrow T$.
- (i) True or False: $T \stackrel{*}{\Rightarrow} T$.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Forn

New start symbol Eliminate all ∈-rules Eliminate all unit rules Eliminate all mixed

Eliminate all mixed rules Eliminate all long rules

Derivations in CNF

The Membership Problem for CFGs

Assignment

Solution

- (d) $ab, ba, aab \in L(G)$.
- (e) $\mathbf{a}, \mathbf{b}, \varepsilon \notin L(G)$.
- (f) False, $T \Rightarrow aba$.
- (g) True, $T \stackrel{*}{\Rightarrow} aba$.
- (h) False, $T \Rightarrow T$.
- (i) True, $T \stackrel{*}{\Rightarrow} T$.

Context-Free Grammars -Chomsky Normal Form

Robb T Koethe

Homework Review

Chomsky Normal Form

New start symbol Eliminate all ε -rules Eliminate all unit rules

Eliminate all mixed rules
Eliminate all long rules

Derivations in CNF

The Membership Problem for CFGs

Assignment

Exercise 3, page 128.

- (j) True or False: $XXX \stackrel{*}{\Rightarrow} aba$.
- (k) True or False: $X \stackrel{*}{\Rightarrow} aba$.
- (I) True or False: $T \stackrel{*}{\Rightarrow} XX$.
- (m) True or False: $T \stackrel{*}{\Rightarrow} XXX$.
- (n) True or False: $S \stackrel{*}{\Rightarrow} \varepsilon$.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Forn

New start symbol Eliminate all ε -rules Eliminate all unit rules

Eliminate all mixed rules Eliminate all long rules

Derivations in CNF

The Membership Problem for CEGs

Assignment

Solution

- (j) True, $XXX \stackrel{*}{\Rightarrow} aba$.
- (k) False, $X \Rightarrow^* aba$.
 - (I) True, $T \stackrel{*}{\Rightarrow} XX$.
- (m) True, $T \stackrel{*}{\Rightarrow} XXX$.
- (n) False, $S \Rightarrow^* \varepsilon$.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Forr

New start symbol Eliminate all ε -rule Eliminate all unit

Eliminate all mixe rules Eliminate all long

Derivations i

The Membershi Problem for

Accianment

Exercise 3, page 128.

(o) Give a description in English of L(G).

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Normal Form

New start symbol

Eliminate all &-rule

Eliminate all unit

Eliminate all mixed rules
Eliminate all long rules

Derivations in CNF

The Membership Problem for CFGs

Assianment

Solution

- (o) The *R* must eventually produce X^nSX^n , for some $n \ge 0$.
- (p) The S must produce either aTb or bTa.
- (q) The *T* must eventually produce X^m , for some $m \ge 0$.
- (r) Thus, so far, R produces $X^n \mathbf{a} X^m \mathbf{b} X^n$ or $X^n \mathbf{b} X^m \mathbf{a} X^n$, for some $m, n \geq 0$.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Forn

New start symbol Eliminate all ε -rules Eliminate all unit rules Eliminate all mixed rules Eliminate all long rules

Derivations ir CNF

The Membership Problem for CFGs

Assignment

Solution

- (o) Now *X* can be replaced with either **a** or **b**
- (p) Therefore, X^n and X^m can be any string in Σ^* .
- (q) Thus, the language is the set of all strings of the form uavbw or ubvaw, where $u, v, w \in \Sigma^*$ and |u| = |w|.
- (r) It is not hard to see that this is the complement of the set $\{ww^R \mid w \in \Sigma^*\}$.

Chomsky Normal Form

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Form

New start symbol Eliminate all ɛ-rule: Eliminate all unit rules Eliminate all mixed rules Eliminate all long

Derivations i CNF

The Membership Problem for CFGs

Assignment

Definition (Chomsky Normal Form)

A grammar is in Chomsky Normal Form, abbreviated CNF, if each rule is of the form

- \bullet $A \rightarrow BC$, or
- \bullet $A \rightarrow a$,

where *B* and *C* are nonteriminals not equal to *S* and *a* is a terminal. Furthermore, the rule $S \to \varepsilon$ is allowed.

Chomsky Normal Form

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Form

New start symbol Eliminate all ε-rule Eliminate all unit rules

Eliminate all mixe rules Eliminate all long

Derivations i

The Membershi Problem for

Assianment

Theorem (Chomsky Normal Form)

Every context-free language is generated by a grammar in Chomsky Normal Form.

Chomsky Normal Form

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Form

New start symbol
Eliminate all &-rule:
Eliminate all unit
rules
Eliminate all mixed
rules

Eliminate all mixed rules
Eliminate all long rules

Derivations in CNF

The Membership Problem for CFGs

Assianment

Outline of proof.

Begin with a grammar for the context-free language.

- Add a new start symbol S_0 .
- Eliminate all ε -rules $A \to \varepsilon$.
- Eliminate all unit rules $A \rightarrow B$.
- Eliminate all mixed rules.
- Eliminate all long rules.

New Start Symbol

Context-Free Grammars -Chomsky Normal Form

New start symbol

Proof (New start symbol S_0).

• Add the rule $S_0 \rightarrow S$.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Forn

New start symbol

Eliminate all ε-rule

Eliminate all unit

rules Eliminate all mixed

rules
Eliminate all long

Derivations i CNF

The Membershi Problem for CFGs

Assignment

Example (New start symbol S_0)

Start with the grammar

$$S \rightarrow SXS \mid \varepsilon$$

$$X \rightarrow \mathbf{ab} \mid \varepsilon$$

Add the rule

$$S_0 \rightarrow S$$

Context-Free Grammars -Chomsky Normal Form

New start symbol

Example (New start symbol S_0)

We now have the grammar

$$S_0 \rightarrow S$$

$$\begin{array}{ccc} S_0 & \to & S \\ S & \to & SXS \mid \varepsilon \end{array}$$

$$X \ \ o \ \ {f ab} \ | \ arepsilon$$

Eliminate All ε -Rules

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Form

Eliminate all €-rules

Eliminate all mixed rules
Eliminate all long

Derivations in

The Membershi Problem for

Assignment

Proof (Eliminate all ε -rules).

- For each rule $A \to \varepsilon$ and each rule $B \to uAv$ (with A on the right), add a rule $B \to uv$.
- Eliminate the rule $A \rightarrow \varepsilon$.

Context-Free Grammars -Chomsky Normal Form

Robb T Koethe

Homewor Review

Chomsky Normal Forn

Normal For

Eliminate all ε-rules
Eliminate all unit
rules

Eliminate all mixe rules Eliminate all long

Derivations in CNF

The Membership Problem for CFGs

Assignment

Example (Eliminate all ε -rules)

• Apply the rules $S \to \varepsilon$ and $X \to \varepsilon$ to the other rules, creating the rules

$$S_0 \rightarrow \varepsilon$$

$$S \rightarrow X$$

$$S \rightarrow SS$$

$$S \rightarrow XS$$

$$S \rightarrow SX$$

$$S \rightarrow S$$

(Don't bother keeping the last rule.)

Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homewor Review

Chomsky Normal Forn

New start symbol

Eliminate all ε-rules
Eliminate all unit

Eliminate all mix rules

rules Eliminate all long rules

Derivations is CNF

The Membershi Problem for

Assignment

Example (Eliminate all ε -rules)

Eliminate the rules

$$S \rightarrow \varepsilon$$

$$X \rightarrow$$

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Forn

New start symbol Eliminate all ε-rules

Eliminate all unit rules

rules
Fliminate all long

Derivations in

The Membershi Problem for

Assignment

Example (Eliminate all ε -rules)

We now have

$$S_0 \rightarrow S \mid \varepsilon$$

$$S \rightarrow SXS \mid SS \mid SX \mid XS \mid X$$

$$X \rightarrow \mathbf{ab}$$

Eliminate All Unit Rules

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Form

New start symbol

Eliminate all ε-rule

Eliminate all mixe rules Eliminate all long

Derivations in

The Membershi Problem for

Assignment

Proof (Eliminate all unit rules).

- If $A \to B$ and $B \to u$ are rules, then add the rule $A \to u$.
- Eliminate the rule $A \rightarrow B$.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Form

New start symbol

Eliminate all ε-rul

rules
Eliminate all mi

rules
Eliminate all long
rules

Derivations is CNF

The Membershi Problem for CFGs

Assignment

Example (Eliminate all unit rules)

Add the rules

$$S_0 \rightarrow SXS \mid SS \mid SX \mid XS \mid X \mid \mathbf{ab}$$

 $S \rightarrow \mathbf{ab}$

Eliminate the rules

$$S_0 \rightarrow S$$

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Form

New start symbol

Eliminate all arepsilon-rule

Eliminate all unit

Eliminate all mixe rules

Derivations in

The Membershi Problem fo

Assianment

Example (Eliminate all unit rules)

We now have

$$S_0 \rightarrow SXS \mid SS \mid SX \mid XS \mid \mathbf{ab} \mid \varepsilon$$

$$S \rightarrow SXS \mid SS \mid SX \mid XS \mid \mathbf{ab}$$

$$X \rightarrow \mathbf{ab}$$

Eliminate All Mixed Rules

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky
Normal Form
New start symbol
Eliminate all ε-rule

Eliminate all mixed rules
Eliminate all long

Derivations i CNF

The Membership Problem for CFGs

Assignment

Definition (Mixed rule)

A mixed rule is a rule whose right-hand side has length at least 2 and contains at least one terminal.

Proof (Eliminate all mixed rules).

Add rules

$$A \rightarrow a$$

for all terminals *a* appearing in mixed rules.

Replace a with A in those rules.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewoo Review

Chomsky Normal Form

New start symbol Eliminate all ε -rule Eliminate all unit

rules Eliminate all mixed rules

Eliminate all long rules

Derivations in CNF

The Membershi Problem for

Assignment

Example (Eliminate all mixed rules)

Add the rules

 $A \rightarrow \mathbf{a}$

 $B \rightarrow t$

Replace the string ab with AB.

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Forn

New start symbol Eliminate all ε -rules Eliminate all unit rules

Eliminate all mixed rules
Eliminate all long

Derivations in

The Membership Problem for CFGs

Assignment

Example (Eliminate all mixed rules)

We now have

$$S_0 \rightarrow SXS \mid SS \mid SX \mid XS \mid AB \mid \varepsilon$$

$$S \rightarrow SXS \mid SS \mid SX \mid XS \mid AB$$

$$X \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow \mathbf{b}$$

Eliminate All Long Rules

Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homewor Review

Chomsky Normal Forr

New start symbol Eliminate all ε -rules Eliminate all unit rules

Eliminate all mixe

Eliminate all long rules

Derivations i

The Membership Problem for

Assianment

Definition (Mixed rule)

A long rule is a rule whose right-hand side has length at least 3.

Eliminate All Long Rules

Context-Free Grammars -Chomsky Normal Form

Robb T. Koether

Homewor Review

Chomsky Normal Form

Normal Form

New start symbol

Eliminate all Sarul

Eliminate all ε-rules
Eliminate all unit
rules

Eliminate all mixe

Eliminate all long

Derivations in

The Membership Problem for

Problem for CFGs

Assignment

Proof (Eliminate all long rules).

Replace the long rules

$$A \rightarrow B_1B_2 \dots B_k, (k \geq 3)$$

with

$$A \rightarrow B_1C_1$$

$$C_1 \rightarrow B_2C_2$$

$$C_2 \rightarrow B_3C_3$$

÷

$$C_{k-2} \rightarrow B_{k-2}C_{k-2}$$

$$C_{k-1} \rightarrow B_{k-1}B_k$$

Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homewor Review

Chomsky Normal Forn

New start symbol

Eliminate all ε-rule

rules

Eliminate all mixe

rules Eliminate all long

Derivations in

The Memi

rules

Membership Problem for CFGs

Assignment

Example (Eliminate all long rules)

Replace

$$S_0 \rightarrow SXS$$

$$S \rightarrow SXS$$

with

$$S_0 \rightarrow SY$$

$$S \rightarrow SY$$

$$Y \rightarrow XS$$

Context-Free Grammars -Chomsky Normal Form

Robb T. Koether

Homewor Review

Chomsky Normal Forr

Normal Forn

Eliminate all ε -rule
Eliminate all unit
rules

rules
Eliminate all long

Derivations is

The Membership Problem for CFGs

Example (Eliminate all long rules)

• The final result is

$$S_0 \rightarrow SY \mid SS \mid SX \mid XS \mid AB \mid \varepsilon$$

$$S \rightarrow SY \mid SS \mid SX \mid XS \mid AB$$

$$X \rightarrow AB$$

$$Y \rightarrow XS$$

$$B \rightarrow \mathbf{b}$$

which is in Chomsky Normal Form.

A Derivation in CNF

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Forn

New start symbol Eliminate all ε -rules Eliminate all unit rules

rules
Eliminate all long

Derivations in CNF

The Membership Problem for CFGs

Assignment

Example (A CNF derivation)

• Use this grammar in CNF to derive the string ababab.

$$S_0 \Rightarrow SY$$

$$\Rightarrow$$
 SXS

$$\Rightarrow ABXS$$

$$\Rightarrow$$
 ABABS

$$\Rightarrow ABABAB$$

A Derivation in CNF

Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homewor Review

Chomsky Normal Forn

New start symbol
Eliminate all ε-rules
Eliminate all unit

Eliminate all mixe rules
Eliminate all long

Derivations in CNF

The Membership Problem for CFGs

Assianment

Example (A CNF derivation)

:

 \Rightarrow **a**BABAB

 \Rightarrow **ab**ABAB

 \Rightarrow **aba**BAB

 \Rightarrow **abab**AB

 \Rightarrow ababaB

 \Rightarrow ababab.

CNF Derivations

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Form New start symbol

New start symbol
Eliminate all £-rules
Eliminate all unit
rules
Eliminate all mixed

Eliminate all long rules

Derivations in CNF

The Membership Problem for CFGs

Assianment

Theorem

If a grammar G is in CNF and a string w in L(G) has length n, then w is derived from G in exactly 2n - 1 steps.

The Membership Problem for CFGs

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky
Normal Form
New start symbol
Eliminate all &-rule
Eliminate all unit
rules
Eliminate all mixed
rules
Eliminate all long

Derivations i

The Membership Problem for CFGs

Assianment

Definition (The Membership Problem for CFGs)

Given a CFG G and a string w, can w be derived from G?

 The previous theorem allows us to solve the Membership Problem.

Context-Free Grammars -Chomsky Normal Form

> Robb 1 Koethe

Homewo Review

Chomsky
Normal Form
New start symbol
Eliminate all ε-rules
Eliminate all unit
rules
Eliminate all mixed
rules
Eliminate all long

Derivations ir CNF

The Membership Problem for CFGs

Assignment

Example (The Membership Problem for CFGs)

- Show that the string abba is not derivable from the grammar of the previous example.
- Draw a tree of all possible derivations of strings up to length 4.
- This will involve up to 7 steps (but no more).

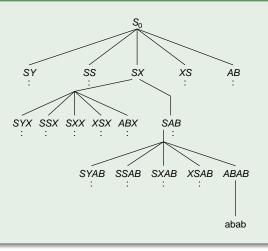
Context-Free Grammars -Chomsky Normal Form

> Robb T. Koether

Homewor Review

Chomsky Normal Form

New start symbol
Eliminate all &-rule
Eliminate all unit
rules
Eliminate all mixed


Eliminate all mixe rules Eliminate all long rules

Derivations in CNF

The Membership Problem for CFGs

Assianment

Example (The Membership Problem for CFGs)

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homework Review

Chomsky Normal Form

New start symbol
Eliminate all *ε*-rules
Eliminate all unit
rules
Eliminate all mixed

rules
Eliminate all long

Derivations is CNF

The Membership Problem for CFGs

Assianment

Example (The Membership Problem for CFGs)

Put the grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c}$$

into CNF.

• Show that the string c++ is not derivable from it.

Assignment

Context-Free Grammars -Chomsky Normal Form

> Robb T Koethe

Homewor Review

Chomsky Normal Forr

New start symbol Eliminate all ε -rule Eliminate all unit rules

Eliminate all mixe rules Eliminate all long rules

Derivations is CNF

The Membershi Problem for

Assignment

Homework

- Read Section 2.1, pages 106 109.
- Exercise 14, page 129.