Sampling Distribution of a Sample Proportion Lecture 25 Sections 8.1 - 8.2

Robb T. Koether

Hampden-Sydney College

Fri, Feb 26, 2010

Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

< ロ > < 同 > < 回 > < 回 >

Outline

2 Computing the Sampling Distribution of \hat{p}

-

< 6 b

Outline

2 Computing the Sampling Distribution of \hat{p}

The Sample Proportion

- The letter *p* represents the population proportion.
- The symbol \hat{p} ("*p*-hat") represents the sample proportion.
- We see from our experiment that \hat{p} takes on different values at random, depending on the sample.
- Therefore, \hat{p} is a random variable.

The Random Variable \hat{p}

- As a random variable, \hat{p} has a probability distribution.
- Can we describe its pdf?

A

The Random Variable \hat{p}

- As a random variable, \hat{p} has a probability distribution.
- Can we describe its pdf?
- Yes

< 6 k

Theory says that

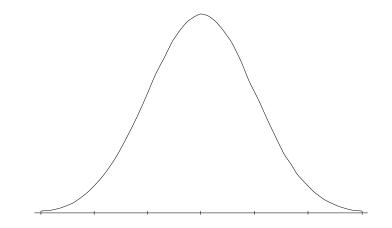
- The average value of \hat{p} is p and
- The standard deviation of p̂ is

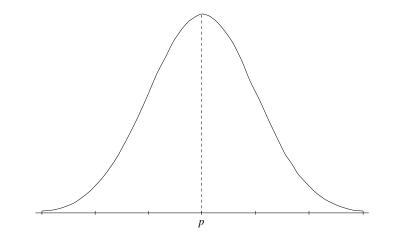
$$\sqrt{\frac{p(1-p)}{n}}.$$

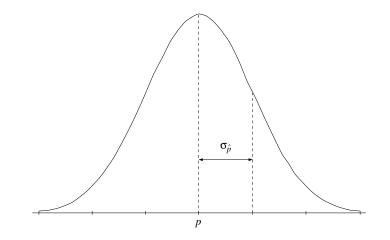
• Furthermore, if the sample size is large enough, the shape of the distribution is normal.

That is,

$$\mu_{\hat{p}} = p$$


and


$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$


and for large samples,

$$\hat{p}$$
 is $N\left(p,\sqrt{\frac{p(1-p)}{n}}\right)$.

< ロ > < 同 > < 回 > < 回 >

э

• Therefore, in our experiment, where p = 0.40,

$$\mu_{\hat{
ho}} = 0.40$$

and

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(0.40)(0.60)}{10}} = 0.1549.$$

• However, a sample size of 10 is not large enough for the shape to be normal.

< 6 b

Outline

1) The Sampling Distribution of \hat{p}

2 Computing the Sampling Distribution of \hat{p}

3 Assignment

Image: A matrix and a matrix

Definition (Sampling Distribution of a Statistic)

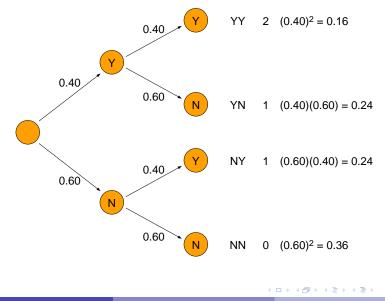

The sampling distribution of a statistic is the distribution of values of that statistic over all possible samples of a given size n from the population.

• We may sample with or without replacement.

The Sample Proportion

- We will work out the sampling distribution for p̂ for sample sizes of 1, 2, and 3.
- Then I will show you the sampling distribution for p̂ for sample sizes of 4, 5, and 10.

- Suppose that 40% of all people strongly disapprove of President Obama's performance.
- Suppose that we select one person at random.
- We may diagram the 2 possibilities.



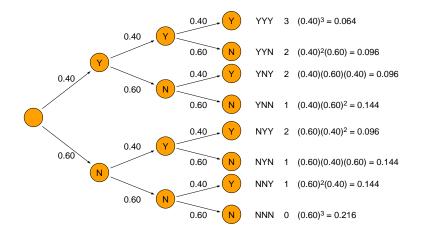
æ

イロト イヨト イヨト イヨト

- Now we take a sample of 2 people, sampling with replacement.
- Find the sampling distribution of \hat{p} .

4 3 > 4 3

Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion


- Let *x* be the number of people (out of 2) who strong disapprove of President Obama's performance.
- The probability distribution of \hat{p} is

X	P(x)
0	0.36
1/2	0.48
1	0.16

< A >

- Now we take a sample of 3 people, sampling with replacement.
- Find the sampling distribution of \hat{p} .

4 3 > 4 3

Fri, Feb 26, 2010 19 / 30

(3)

< 17 ▶

- Let p̂ be the sample proportion of people who strong disapprove of President Obama's performance.
- The sampling distribution of \hat{p} is

<i></i> <i></i>	$P(\hat{p})$
0	0.216
1/3	0.432
2/3	0.288
1	0.064

4 3 5 4 3

< 6 b

• If we sample 4 people, then the sampling distribution of the sample proportion is

<i>p</i>	$P(\hat{p})$
0	0.1296
1/4	0.3456
2/4	0.3456
3/4	0.1536
1	0.0256

< ロ > < 同 > < 回 > < 回 >

• If we sample 5 people, then the sampling distribution of the sample proportion is

\hat{p}	$P(\hat{p})$
0	0.0778
1/5	0.2592
2/5	0.3456
3/5	0.2304
4/5	0.0768
1	0.0102

4 3 > 4 3

• If we sample 6 people, then the sampling distribution of the sample proportion is

<i></i> \hat{p}	$P(\hat{p})$
0	0.0467
1/6	0.1866
2/6	0.3110
3/6	0.2765
4/6	0.1382
5/6	0.0369
1	0.0041

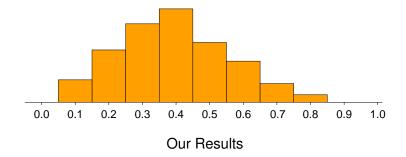
4 3 5 4 3

< 6 b

 If we sample 10 people, then the sampling distribution of the sample proportion is

($P(\hat{p})$
0.00	0.0060
0.10	0.0403
0.20	0.1209
0.30	0.2150
0.40	0.2508
0.50	0.2007
0.60	0.1115
0.70	0.0425
0.80	0.0106
0.90	0.0016
1.00	0.0001

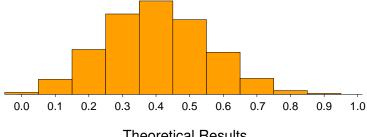
4 3 5 4 3


4 A 1

• Therefore, in our experiment, if we collected 100 samples of size 10, then we would expect

Sample	Expected No.	Actual No.	
Proportion	of Samples	of Samples	Difference
0.00	1	0	-1
0.10	4	6	+2
0.20	12	14	+2
0.30	22	21	-1
0.40	25	25	0
0.50	20	16	-4
0.60	11	11	0
0.70	4	5	+1
0.80	1	2	+1
0.90	0	0	0
1.00	0	0	0

- Theory predicts that the average of our data set will be 0.40 and the standard deviation will be 0.1549.
- Find the average and standard deviation of the frequency distribution


Sample Proportion	No. of Samples
0.00	0
0.10	6
0.20	14
0.30	21
0.40	25
0.50	16
0.60	11
0.70	5
0.80	2
0.90	0
1.00	0

Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

Fri, Feb 26, 2010 27 / 30

æ

Theoretical Results

Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

æ

Outline

1) The Sampling Distribution of \hat{p}

2 Computing the Sampling Distribution of \hat{p}

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Assignment

Homework

Catch up on old homework.

Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

2

(3)