Math 444 - Tentative Schedule

  Lecture     Date     Section     Notes     Homework  
1 1/14 1.1   The complex plane  
2 1/16 1.1   Formal view of complex numbers
3 1/19 1.2   Some geometry  
4 1/21 1.3   Subsets of the plane       Homework #1      
5 1/23 1.3   Subsets of the plane - con'd
6 1/26 1.4   Functions and limits
7 1/28 1.4   Infinite series       Homework #2      
8 1/30 1.5   Exponential & logarithmic functions
9 2/2 1.5   Trigonometric functions
10 2/4 1.6   Curves       Homework #3      
11 2/6 1.6   Line integrals
12 2/9 1.6   Green's theorem
13 2/11   Review
14 2/13 Midterm 1
15 2/16 2.1   Analytic functions: the Cauchy-Riemann equations
16 2/18 2.1   Cauchy-Riemann equations - con'd         Homework #4      
17 2/20 2.1   Flows & Fields (time permitting)  
18 2/23 2.2   Power series
19 2/25 2.2   Power series - con'd       Homework #5      
20 2/27 2.3   Cauchy's theorem and Cauchy's formula  
21 3/2 2.3   Cauchy's theorem and Cauchy's formula - con'd  
22 3/4 2.4   Consequences of Cauchy's formula
23 3/6 2.4   Consequences of Cauchy's formula - con'd
24 3/16 2.5   Isolated singularities
25 3/18 2.5   Residues       Homework #6      
26 3/20 2.5   Laurent series
27 3/23   Review
28 3/25 Midterm 2
29 3/27 2.6   The Residue theorem
30 3/30 2.6   Introduction to contour integrals
31 4/1 3.1   Zeroes of an analytic function       Homework #7      
32 4/3 3.1   Zeroes of an analytic function
33 4/6 3.2   Maximum modulus principle
34 4/8 3.2   Mean value
35 4/10 3.3   Fractional linear transformations - I
36 4/13 3.3   Fractional linear transformations - II
37 4/15 3.3   Fractional linear transformations - III       Homework #8      
38 4/17   Review
39 4/20 Midterm 3
40 4/22 3.4   Conformal mapping
41 4/24 3.4   Conformal mapping - con'd
42 4/27   Review