Math 231 - Tentative Schedule

  Lecture     Date     Section     Topic     Homework  
1 1/16 1.I.1   Linear Systems     Cht. 1.I# 1.17, 1.20, 1.21, 1.25, 1.29  
2 1/18 1.I.2   Describing Solution Sets     Cht. 1.I# 2.15, 2.16, 2.17, 2.18, 2.20, 2.22, 2.23  
3 1/21 1.I.3   General = Particular + Homogeneous     Cht. 1.I# 2.19  
4 1/23 1.I.3   General = Particular + Homogeneous - con'd     Cht. 1.I# 3.16, 3.17  
5 1/25 1.II.1   Linear Geometry of n-Space     Cht. 1.II# 1.3, 1.4, 1.5, 1.7 & the in-class problems  
6 1/28 1.II.2   Length and Angle Measures     Cht. 1.II# 2.12, 2.14, 2.20, 2.24, 2.26  
7 1/30   Vector Geometry in 2-dimensions (Midpoints, Parallel Lines, Convex Sets)     Linear Combinations homework  
8 2/01 2.I.1   Vector Spaces     Cht. 2.I# 1.20, 1.22  
9 2/04 2.I.2   Subspaces and Spanning Sets     Cht. 2.I# 2.22, 2.26(a,b,c only), 2.29, 2.30  
10 2/06 2.II.1   Linear Independence     Cht. 2.II# 1.18, 1.19, 1.32, 1.39 (a,b only)  
11 2/08 2.III.1   Basis     Cht. 2.III# 1.16, 1.25, 1.30  
12 2/11   Review      
13 2/13   Midterm 1      
14 2/15 2.III.2   Dimension     Cht. 2.III# 2.16, 2.28, 2.29, 2.30, 2.32  
15 2/18 2.III.3   Vector Spaces and Linear Systems     Cht. 2.III# 3.17, 3.18, 3.19, 3.20, 3.35, 3.37  
16 2/20 3.II.1   Linear Transformations (aka Homomorphisms)     Cht. 3.II# 1.19, 1.23, 1.24, 1.27, 1.33  
17 2/22 3.II.1   Linear Transformations - con'd     Cht. 3.II# 1.17, 1.25  
18 2/25 3.I.1   Isomorphisms     Cht. 3.III# 1.14, 1.16 and also 2.13  
19 2/27 3.II.2   Rangespace and Nullspace     Cht. 3.II# 2.23, 2.24, 2.25, 2.41  
20 3/01 3.II.2   Rangespace and Nullspace - con'd     Cht. 3.II# 2.30, 2.31  
21 3/04 3.I.2   Isomorphisms and Representations     Cht. 3.III# 1.21 and also 2.16  
22 3/06   Visualizing Linear Maps      
23 3/08   Geometric Properties of Linear Maps      
24 3/18   Review      
25 3/20   Midterm 2      
26 3/22 3.IV.1-3.IV.2   Matrix Operations & Matrix Multiplication     Cht. 3.IV# 2.14, 2.17, 2.20, 2.29, 2.32  
27 3/25 3.IV.3   Mechanics of Matrix Multiplication     Cht. 3.IV# 3.24, 3.25, 3.26, 3.27, 3.35  
28 3/27 3.IV.4   Inverses     Cht. 3.IV# 4.13, 4.14, 4.15, 4.20, 4.21, 4.26  
29 3/29 3.V.1   Change of Basis     Cht. 3.V# 1.7, 1.8, 1.11, 1.22  
30 4/01 4.I.1 - 4.I.2   Determinants     Cht. 4.I# 2.8, 2.9, 2.11, 2.14, 2.17  
31 4/03 4.III.1   Formulas for Determinants     Cht. 4.III# 1.13, 1.14 & the in-class problems  
32 4/05 4.II.1   Geometry of Determinants     Cht. 4.II# 1.13, 1.14, 1.18, 1.20, 1.24 & the in-class problems  
33 4/08 5.II.1 & 5.II.2   Similarity and Diagonalizability     Cht. 5.II# 1.5, 1.18 and 2.8, 2.10, 2.11  
34 4/10 5.II.3   Eigenvectors and Eigenvalues     Cht. 5.II# 3.22, 3.23, 3.25, 3.37, 3.40  
35 4/12   No Class      
36 4/15 5.II.3   Eigenvectors and Eigenvalues - con'd     Cht. 5.II# 3.36, 3.43 & the in-class problems 
37 4/17 5.I.1   Complex Eigenvalues     Cht. 5.II# 3.24  
38 4/19   Applications of Eigenvalues: Linear Recurances     p.413# 4 and p.423-424# 1,2  
39 4/22   Review (Eigenvalue Guy)      
40 4/24   Midterm 3      
41 4/26   Applications of Eigenvalues: Differential Equations     Differential equation problems  
42 4/29   Markov Chains